
Deep Reinforcement Learning of an Agent in a
Modern 3D Video Game

Samuel Arzt, Gerhard Mitterlechner, Markus Tatzgern, and Thomas Stütz

Salzburg University of Applied Sciences, Urstein Süd 1, A5412 Puch/Salzburg
thomas.stuetz@fh-salzburg.ac.at

Abstract. This paper applies two recent deep reinforcement learning
(DRL) methods, namely DQN and A2C, to train an agent in a modern
3D video-game environment called Delivery Duel. The agent perceives
the environment only by raw pixel data. The reward of the DRL algo-
rithms is based on the game’s score. The focus of this work is on the im-
pact of environment modifications on the learning performance, namely
the environment representation (complex 3D, simple 2D), the reward sig-
nal (sparse, continuous) and the agent’s motion control (physics-based,
linear). The introduced test framework will be made publicly available
and thus can be used for future experiments.

Keywords: Deep learning, Reinforcement Learning, video game, 3D

1 Introduction

Recent advances in deep learning have led to major improvements in computer
vision, in particular for image classification and object detection tasks (e.g.,[5,
6, 12, 24]). These advances were mainly achieved by supervised learning of con-
volutional neural networks (CNNs) [14], but have also sparked new interest in
revisiting these methods for the field of reinforcement learning (RL). In RL an
agent learns through interaction with an environment and receiving feedback in
the form of a numerical reward signal [23]. While it was previously thought [16]
that the combination of simple online RL and non-linear function approximators,
such as deep Neural Networks (NNs), was fundamentally unstable, Mnih et al.
[16] showed that the inherent problems of this combination can be overcome by
their DQN (Deep Q-Network) architecture. Mnih et al. [16] successfully applied
their approach to a collection of Atari2600 games, which have been specifically
compiled to evaluate machine learning approaches [2]. Further improvements on
the Atari benchmark were achieved with improved RL approaches, such as A2C
(Advantage Actor Critic) [15] and extensions to DQN [10].

Even though these machine learning techniques are tested and compared on
simulated game environments, the ultimate goal is to explore new possibilities
to solve real-world problems. In this work, two modern deep RL algorithms,
namely DQN [16] and A2C [15], are applied to a novel modern 3D video-game
called Delivery Duel.



2 Samuel Arzt, Gerhard Mitterlechner, Markus Tatzgern, and Thomas Stütz

The video-games evluated as part of the Atari benchmark are visually simple
and resemble the simple rendering variant of the game environment introduced
in this paper (see Fig. 1, right). The main question is whether deep RL with DQN
[16] and A2C [15] can also be successfully applied to the visually more complex
3D renderings of a modern computer game (see Fig. 1, left). Additionally, the
impact of the complexity of the agent’s motion control in the environment and
the design of the reward function on learning performance is investigated. The
novel evaluation framework is publicly accessible online [1].

2 Related Work

RL has been applied to traditional board games such as Backgammon [25] or Go
[21, 22], but also card games such as Poker [9, 4] for many years. Video games
became a popular testbed for RL algorithms since the introduction of the Arcade
Learning Environment (ALE), an API for using the raw pixel data of a collection
of Atari2600 games as the input of RL algorithms, by Bellemare et al. [2]. Mnih
et al. [17] successfully tackled the task of learning multiple Atari games using
the same hyperparameters and network architecture with their DQN algorithm.
Multiple extensions of DQN, such as Prioritized Experience Replay [20], Dueling
DQN [30], Double DQN [29], Noisy Nets [19, 8] and finally an accumulation of
all of these extensions dubbed Rainbow [10] have been proposed. Improvements
on the ALE benchmark were also achieved by other algorithms, such as A3C /
A2C [15] and ACKTR [31].

Efforts have also been made to apply RL to 3D video-games. Similar to the
ALE for arcade games, an API for interacting with the first person shooter
(FPS) Doom (originally released in 1993) and retrieving its visual output was
established by Kempka et al. [11]. The Doom test-environment has since been
used in multiple studies, e.g., [13, 31]. In FPSs the game state is usually only
partially observable, thus agents have to utilize additional complex extensions
such as recurrent network structures, Curriculum Learning and Attention Frames
[31], or dividing the problem into a navigation and action phase [13].

Although compared to Atari games, Doom is a more modern game, which
uses simple 3D renderings, these studies still very much focus on relatively simple
graphics (i.e., low visual complexity, simple textures, little detail). The environ-
ment introduced in this paper relies on modern 3D graphics of the Unity [28]
game-engine and applies state-of-the-art deep RL algorithms. Instead of complex
extensions to these RL algorithms, the focus is on the impact of different envi-
ronment representations, the motion-control in the environment and the design
of the reward function.

3 Deep Reinforcement Learning of an Agent in the 3D
Game ”Delivery Duel”

Two recent deep RL methods, namely DQN [16, 30, 29, 20] and A2C [15] were
applied to a modern 3D video game called Delivery Duel. The game environment



Deep Reinforcement Learning of an Agent in a Modern 3D Video Game 3

and mechanics are explained in section 3.1. The applied learning approaches and
the employed software frameworks are briefly described in section 3.2. Finally,
the different configurations of the environment are explained (see section 3.3).
All material to reproduce the results of this paper are available online [1].

3.1 3D Game Environment: Delivery Duel

In Delivery Duel the player / agent controls a delivery van. The agent’s goal is
to deliver pizzas to target locations in an urban environment. The entire scene
is rendered from an approximately 75◦ top-down perspective (see Fig. 1, left).
Delivery destinations are highlighted above the corresponding building by a big
circular marker. The agent completes a delivery by conducting a throw action
in the correct direction and hitting the destination building. After a delivery,
the agent has to return to its base, located in the middle of the city, before
a new destination is highlighted. The agent’s score is increased for delivering
items, proportional to how fast the item was delivered, and for returning to the
base. The game play builds upon the physics-based motion control, which makes
steering the delivery van quite difficult but fun.

3.2 Frameworks: OpenAI Gym / Baselines and Unity ML-Agents

Delivery Duel was developed with the Unity game-engine [28], a very widely em-
ployed engine. In order to train RL agents in this environment, the frameworks
Gym [3], Baselines [7] and ML-Agents [26] were combined. Baselines provides
open-source Python implementations of popular RL algorithms [7]. Gym [18]
defines an open-source Python interface for agent environments. ML-Agents ex-
tends the Unity engine with an interface for testing AI algorithms on existing
Unity games by offering an API which connects Unity with Python [26, 27]. ML-
Agents was integrated into Delivery Duel and its Python interface was wrapped
as a Gym environment. In this way the DQN and A2C implementation of Base-
lines was used to train RL agents on Delivery Duel.

The DQN implementation used is a combination of Prioritized Experience
Replay [20], Double DQN [29] and Dueling DQN [30], and uses ε-greedy ex-
ploration. The network structure and all hyperparameters of DQN were set ac-
cording to [16, 30, 29, 20]. The used CNN consists of three convolutional layers
which lead into another fully connected hidden layer. The hyperparameters of
A2C were set according to [15]. The input of the network was a stack of the last
four frames of raw pixel values, which are gray-scaled and down-sampled to an
84x84 array of 8-bit values, as in [16].

3.3 Evaluated Configurations

In the following, the variation of environment representation, motion control and
the reward signal, which result in eight different configurations, are explained.
The impact of each of the eight configurations on learning performance of DQN
and A2C was evaluated.



4 Samuel Arzt, Gerhard Mitterlechner, Markus Tatzgern, and Thomas Stütz

Environment Representation: A complex 3D render-mode and a simpli-
fied 2D render-mode were evaluated. Fig. 1 shows a visual comparison of these
two render-modes.

Fig. 1. Comparing the two different render-modes. The city in complex render-mode
(left), i.e. the same as in the original game, and the city in simple render-mode (right),
where only the most important information is rendered from a completely top-down
view

Agent Motion Control: The agent, which is represented by a delivery
van, is allowed to move freely in the environment. The default option of motion
control of the agent is physics-based, i.e. the agent moves the van by applying
forces to it. The second evaluated motion control approach is a linear motion
control model, which allows the agent to directly translate the van in x and y
directions.

Reward: The default option for the agent’s reward signal is simply the
game’s score, which is increased for a successful delivery (by a value in range
[50, 150], depending on the speed of delivery) and for returning to the base (by a
fixed value of 75). Additionally, a second option with a more continuous reward
signal, which also increases or decreases the score by a value of 10 for every
five in-game units driven closer or further away from the current target was
evaluated.

4 Results

DQN and A2C were used to train an agent for five million time-steps on Delivery
Duel using eight different test-configurations (see Sec. 3.3). During training, a
single episode was defined as the steps required by the agent to reach a score
larger than 1500, at which point the task is considered solved. Furthermore, an
episode was terminated if the agent failed to reach its current target for more
than 750 steps. The performance of a test-run is measured by the mean reward
of the last 100 episodes (mean100). Fig. 2 and 3 compare the performance of
agents trained using DQN and A2C on five of the eight different configurations.
The remaining three configurations were omitted, because both algorithms were



Deep Reinforcement Learning of an Agent in a Modern 3D Video Game 5

not able to exceed a mean100 reward of 250. The axes of these figures plot the
elapsed time-steps (on the x-axis, from left to right) against the current mean100
reward (on the y-axis, from bottom to top).

0 1 2 3 4 5

·106

0

1,000

2,000

3,000

Steps

M
ea

n
1
0
0

ep
is

o
d
e

re
w

a
rd

DQN

2D, cont, lin

3D, cont, lin

2D, n-cont, lin

3D, n-cont, lin

2D, cont, phys

Fig. 2. A comparison of the performance of each DQN agent trained on a different
configuration of the environment. The three possible modifications were abbreviated,
with 2D / 3D = simple / complex render-mode; (n-)cont = (non-)continuous reward
signal; lin / phys = linear / physical motion control

0 1 2 3 4 5

·106

0

1,000

2,000

3,000

Steps

M
ea

n
1
0
0

ep
is

o
d
e

re
w

a
rd

A2C

2D, cont, lin

3D, cont, lin

2D, n-cont, lin

3D, n-cont, lin

2D, cont, phys

Fig. 3. A comparison of the performance of each A2C agent trained on a different
configuration of the environment. The three possible modifications were abbreviated
in the same way as for Fig. 2

Overall, DQN performed better than A2C by a large margin after the same
amount of steps. However, due to the parallelization capabilities of A2C, it is



6 Samuel Arzt, Gerhard Mitterlechner, Markus Tatzgern, and Thomas Stütz

able to achieve significantly more steps per second than DQN (approximately
by a factor of six).

The configurations using a continuous reward signal and linear movement
outperformed all other test configurations. The slightly more continuous reward
function is most beneficial for learning performance compared to other variations.
Neither DQN nor A2C were able to achieve a mean100 reward larger than 250
when using the unmodified reward signal.

5 Discussion and Outlook

There were multiple reasons for choosing Delivery Duel as an environment.
Firstly, unrestricted source-code access allowed to modify the game accordingly
in order to compare how subtle changes in a test environment influence training
performance. Secondly, Delivery Duel’s sparse reward signal poses a significant
challenge for end-to-end RL. Thirdly, establishing an interface to the Unity en-
gine for state-of-the-art RL algorithms enables these algorithms to be potentially
tested and compared on thousands of other Unity environments.

Interestingly, the two modifications of a more continuous reward signal and
linear movement had a greater influence on learning than the render-mode,
which, to the human observer, might seem like a more significant change of
the environment. For the first 2.5 million steps the DQN agent using the com-
plex render-mode, a continuous reward signal and linear movement even achieves
almost the same performance as its counterpart using the complex render-mode
(compare 2D, cont, lin and 3D, cont, lin of Fig. 2).

When the complex rendering was paired with the physics-based motion con-
trol, neither DQN nor A2C were able to produce any successful policies. These
results indicate that the employed CNN is able to cope with the additional
complexity of a 3D representation, only as long as the underlying environment
interaction problem (motion control) remains simple enough. Future work should
also consider the impact of different network architectures (e.g., deeper networks,
recurrent networks).

Early tests have indicated that agents trained using the linear motion control
can be used to control an agent using the physics-based motion control with
surprising accuracy. These transferred skills could be utilized in a manner similar
to curriculum learning in order to be able to either learn even more complex tasks
or to shorten the required training time.

In addition to the single-player mode, Delivery Duel also offers a four player
local multi-player. Using this mode, further experiments could be conducted on
agent interaction or possible transfer learning capabilities from one player to
another.

6 Conclusions

A novel modern 3D game environment for RL is presented, which is made pub-
licly available for the research community [1].



Deep Reinforcement Learning of an Agent in a Modern 3D Video Game 7

Two recent DRL methods, namely DQN and A2C, have been successfully
applied to train an agent in this environment. A more continuous reward signal
greatly improved the learning performance. DRL agents were able to complete
the task even if the input was a complex 3D rendering. In addition to that, they
were also able to cope with a complex motion control. However, the applied DRL
methods failed to learn successful policies when confronted with a combination
of complex 3D rendering and complex motion control.

These results encourage further experiments on this environment, as well as
research to combine the two learned capabilities, e.g., by transfer learning or
curriculum learning.

7 Acknowledgements

Delivery Duel was developed in collaboration of Katrin-Anna Zibuschka, Lukas
Machegger and Samuel Arzt, who approved to make the game publicly available
for scientific purposes. Their work and approval is greatly appreciated.

Furthermore we thank the University of Applied Sciences Salzburg for the
provided assistance, including scientific advice and research equipment, which
has been a great help in conducting this work.

References

[1] Samuel Arzt. DRL applied to Delivery Duel Repository. 2018. url: https:
//github.com/ArztSamuel/DRL_DeliveryDuel (visited on 08/27/2018).

[2] Marc G Bellemare et al. “The Arcade Learning Environment: An eval-
uation platform for general agents.” In: J. Artif. Intell. Res. (JAIR) 47
(2013), pp. 253–279.

[3] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.
[4] Noam Brown and Tuomas Sanholm. “Libratus: The Superhuman AI for

No-Limit Poker”. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. 2017.

[5] Dan C Cires et al. “Mitosis Detection in Breast Cancer Histology Images
with Deep Neural Networks”. In: Proc. MICCAI. Vol. 2. 2013, pp. 411–
218.

[6] Dan Cires, Ueli Meier, and Jürgen Schmidhuber. “Multi-column Deep Neu-
ral Networks for Image Classification”. In: Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on. IEEE February (2012).

[7] Prafulla Dhariwal et al. OpenAI Baselines. https://github.com/openai/
baselines. 2017.

[8] Meire Fortunato et al. “Noisy networks for exploration”. In: International
Conference on Learning Representations (ICLR). 2018.

[9] Johannes Heinrich and David Silver. “Smooth UCT Search in Computer
Poker.” In: International Conference on Artificial Intelligence (IJCAI).
2015, pp. 554–560.



8 Samuel Arzt, Gerhard Mitterlechner, Markus Tatzgern, and Thomas Stütz

[10] Matteo Hessel et al. “Rainbow: Combining Improvements in Deep Rein-
forcement Learning”. In: arXiv preprint arXiv:1710.02298 (2017). eprint:
1710.02298.

[11] Micha l Kempka et al. “Vizdoom: A doom-based ai research platform for
visual reinforcement learning”. In: Computational Intelligence and Games
(CIG), 2016 IEEE Conference on. IEEE. 2016, pp. 1–8.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances In Neu-
ral Information Processing Systems (2012), pp. 1–9.

[13] Guillaume Lample and Devendra Singh Chaplot. “Playing FPS Games
with Deep Reinforcement Learning.” In: AAAI. 2017, pp. 2140–2146.

[14] Yann LeCun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE 86, no. 11. 1998, pp. 2278–2324.

[15] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement
learning”. In: International Conference on Machine Learning (ICML).
2016, pp. 1928–1937.

[16] Volodymyr Mnih et al. “Human-level control through deep reinforcement
learning”. In: Nature 518.7540 (2015), pp. 529–533.

[17] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”.
In: arXiv preprint arXiv:1312.5602 (2013).

[18] OpenAI. OpenAI Gym. 2018. url: http : / / web . archive . org / web /

20180412213846/https://gym.openai.com/ (visited on 04/14/2018).
[19] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In:

International Conference on Learning Representations (ICLR). 2018.
[20] Tom Schaul et al. “Prioritized Experience Replay”. In: International Con-

ference on Learning Representations (ICLR) (2016).
[21] David Silver et al. “Mastering the game of Go with deep neural networks

and tree search”. In: Nature 529.7587 (2016), pp. 484–489.
[22] David Silver et al. “Mastering the game of go without human knowledge”.

In: Nature 550.7676 (2017), pp. 354–359.
[23] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An In-

troduction. 2nd ed. In progress, Complete draft. MIT Press, 2018, p. 394.
[24] Christian Szegedy et al. “Going Deeper with Convolutions”. In: CVPR.

2015.
[25] Gerald Tesauro. “Temporal difference learning and TD-Gammon”. In:

Communications of the ACM 38.3 (1995), pp. 58–68.
[26] Unity-Technologies. ML-Agents Homepage. 2018. url: https : / / web .

archive.org/web/20180322013330/https://unity3d.com/machine-

learning/ (visited on 04/14/2018).
[27] Unity-Technologies. ML-Agents Repository. 2018. url: https://github.

com/Unity-Technologies/ml-agents (visited on 04/14/2018).
[28] Unity-Technologies. Unity3D. 2018. url: http://web.archive.org/web/

20180412233455/https://unity3d.com/ (visited on 04/14/2018).
[29] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement

Learning with Double Q-Learning.” In: AAAI. 2016, pp. 2094–2100.



Deep Reinforcement Learning of an Agent in a Modern 3D Video Game 9

[30] Ziyu Wang et al. “Dueling network architectures for deep reinforcement
learning”. In: International Conference on Machine Learning (ICML).
PMLR, 2016, pp. 1995–2003. url: http://proceedings.mlr.press/
v48/wangf16.html.

[31] Yuhuai Wu et al. “Scalable trust-region method for deep reinforcement
learning using Kronecker-factored approximation”. In: Advances in neural
information processing systems (NIPS) (2017), pp. 5285–5294.


