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Abstract. We present a modular approach for learning policies for nav-
igation over long planning horizons from language input. Our hierarchi-
cal policy, trained using a combination of imitation and reinforcement
learning, operates at multiple timescales, where the higher-level master
policy proposes subgoals to be executed by specialized sub-policies. Our
choice of subgoals is compositional and semantic, i.e. they can be sequen-
tially combined in arbitrary orderings, and assume human-interpretable
descriptions (e.g . ‘exit room’, ‘find kitchen’, ‘find refrigerator’, etc.).
We use imitation learning to warm-start policies at each level of the hi-
erarchy, dramatically increasing sample efficiency, followed by reinforce-
ment learning. Independent reinforcement learning at each level of hier-
archy enables sub-policies to adapt to consequences of their actions and
recover from errors. Subsequent joint hierarchical training enables the
master policy to adapt to the sub-policies.
On the challenging EQA [1] benchmark in House3D [2], requiring navi-
gating diverse indoor environments, our approach outperforms prior work
by a significant margin, both in navigation and question answering.

1 Introduction

Abstraction is an essential tool for navigating our daily lives. When seeking a
late night snack, we certainly do not spend time planning out the mechanics
of walking and are thankfully also unburdened of the effort of recalling to beat
our heart along the way. Instead, we conceptualize our actions as a series of
higher-level semantic goals – exit bedroom; go to kitchen; open fridge; find

snack; – each of which is executed through specialized coordination of our per-
ceptual and sensorimotor skills. This ability to abstract long, complex sequences
of actions into semantically meaningful subgoals is a key component of human
cognition [3] and it is natural to believe that artificial agents can benefit from
applying similar mechanisms when navigating our world.

We study such hierarchical control in the context of a recently proposed task –
Embodied Question Answering (EmbodiedQA) [1] – where an embodied agent
is spawned at a random location in a novel environment (e.g . a house) and asked
to answer a question (‘What color is the piano in the living room?’ ). To do so,
the agent must navigate from egocentric vision alone (without access to a map of
the environment), locate the entity in question (‘piano in the living room’ ), and
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Fig. 1: We introduce a hierarchical policy for Embodied Question Answering. Given
a question (“What color is the sofa in the living room?”) and observation, our
master policy predicts a sequence of subgoals – Exit-room, Find-room[living],
Find-object[sofa], Answer – that are then executed by specialized sub-policies to
navigate to the target object and answer the question (“Grey”).

respond with the correct answer (e.g . ‘red’ ). From a reinforcement learning (RL)
perspective, EmbodiedQA presents challenges that are known to make learning
particularly difficult – partial observability, planning over long time horizons,
and sparse rewards – the agent may have to navigate through multiple rooms in
search for the answer, executing hundreds of primitive motion actions along the
way (forward; forward; turn-right; . . . ) and receiving a reward based only on
its final answer.

To address this challenging learning problem, we develop a hierarchical Neu-
ral Modular Controller (NMC) – consisting of a master policy that de-
termines high-level subgoals, and sub-policies that execute a series of low-level
actions to achieve these subgoals. Our NMC model constructs a hierarchy that
is arguably natural to this problem – navigation to rooms and objects vs. low-
level motion actions. For example, NMC seeks to break down a question ‘What
color is the piano in the living room?’ to the series of subgoals exit-room;

find-room[living ]; find-object[piano ]; answer; and execute this plan with
specialized neural ‘modules’ corresponding to each subgoal. Each module is
trained to issue a variable length series of primitive actions to achieve its titular
subgoal – e.g . the find-object[piano ] module is trained to navigate the agent
to the input argument piano within the current room. Disentangling semantic
subgoal selection from sub-policy execution results in easier to train models due
to shorter time horizons. Specifically, this hierarchical structure introduces:

– Compressed Time Horizons: The master policy makes orders of magnitude
fewer decisions over the course of a navigation than a ‘flat model’ that directly
predicts primitive actions – allowing the answering reward in EmbodiedQA to
more easily influence high-level motor control decisions.

– Modular Pretraining: As each module corresponds to a specific task, they
can be trained independently before being combined with the master policy.
Likewise, the master policy can be trained assuming ideal modules. We do
this through imitation learning [4, 5] sub-policies.

– Interpretability: The predictions made by the master policy correspond to
semantic subgoals and exposes the reasoning of the agent to inspection (‘What
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is the agent trying to do right now?’ ) in a significantly more interpretable
fashion than just its primitive actions.

First, we learn and evaluate master and sub-policies for each of our subgoals,
trained using behavior cloning on expert trajectories, reinforcement learning
from scratch, and reinforcement learning after behavior cloning. We find that
reinforcement learning after behavior cloning dramatically improves performance
over each individual training regime. We then evaluate our combined hierarchical
approach on the EQA [1] benchmark in House3D [2] environments. Our approach
significantly outperforms prior work both in navigational and question answering
performance. In particular, our agent is able to navigate closer to the target
object and is able to answer questions correctly more often.

2 Related Work

Our work builds on and is related to prior work in hierarchical reinforcement
and imitation learning, grounded language learning, and embodied question-
answering agents in simulated environments.

Hierarchical Reinforcement and Imitation Learning. Our formulation is
closely related to Le et al . [6], and can be seen as an instantiation of the op-
tions framework [7,8], wherein a global master policy proposes subgoals – to be
achieved by local sub-policies – towards a downstream task objective [9–11]. Rel-
ative to other work on automatic subgoal discovery in hierarchical reinforcement
learning [12–14], we show that given knowledge of the problem structure, simple
heuristics are quite effective in breaking down long-range planning into sequen-
tial subgoals. We make use of a combination of hierarchical behavior cloning [4]
and actor-critic [15] to train our modular policy.

Neural Module Networks and Policy Sketches. At a conceptual-level, our
work is analogous to recent work on neural module networks (NMNs) [16–18]
for visual question answering. NMNs first predict a ‘program’ from the question,
consisting of a sequence of primitive reasoning steps, which are then executed
on the image to obtain the answer. Unlike NMNs, where each primitive reason-
ing module has access to the entire image (completely observable) our setting
is partially observable – each sub-policy only has access to first-person RGB –
making active re-evaluation of subgoals after executing each sub-policy essential.
Our work is also closely related to policy sketches [16], which are symbolic de-
scriptions of subgoals provided to the agent without any grounding or sub-policy
for executing them. There are two key differences w.r.t. to our work. First, an
important framework difference – Andreas et al . [16] assume access to a policy
sketch at test time, i.e. for every task to be performed. In EmbodiedQA, this
would correspond to the agent being provided with a high-level plan (exit-room;
find-room[living ]; ...) for every question it is ever asked, which is an unrealistic
assumption in real-world scenarios with a robot. In contrast, we assume that sub-
goal supervision (in the form of expert demonstrations and plans) are available
on training environments but not on test, and the agent must learn to produce
its own subgoals. Second, a subtle but important implementation difference –
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unlike [16], our sub-policy modules accept input arguments that are embeddings
of target rooms and objects (e.g .find-room[living ], find-object[piano ]). This
results in our sub-policy modules being shared not just across tasks (questions)
as in [16], but also across instantiations of similar navigation sub-policies – i.e.,
find-object[piano ] and find-object[chair ] share parameters that enable data
efficient learning without exhaustively learning separate policies for each.

Grounded Language Learning. Beginning with SHRDLU [19], there has been
a rich progression of work in grounding language-based goal specifications into
actions and pixels in physically-simulated environments. Recent deep reinforce-
ment learning-based approaches to this explore it in 2D gridworlds [16, 20, 21],
simple visual [22–27] and textual [28, 29] environments, perceptually-realistic
3D home simulators [1, 30–33], as well as real indoor scenes [34–36]. Our hi-
erarchical policy learns to ground words from the question into two levels of
hierarchical semantics. The master policy grounds words into subgoals (such as
find-room[kitchen ]), and sub-policies ground these semantic targets (such as
cutting board , bathroom ) into primitive actions and raw pixels, both parame-
terized as neural control policies and trained end-to-end.

Embodied Question-Answering Agents. Finally, hierarchical policies for
embodied question answering have previously been proposed by Das et al . [1]
in the House3D environment [2], and by Gordon et al . [30] in the AI2-THOR
environment [37]. Our hierarchical policy, in comparison, is human-interpretable,
i.e. the subgoal being pursued at every step of navigation is semantic, and due to
the modular structure, can navigate over longer paths than prior work, spanning
multiple rooms.

3 Neural Modular Control

We now describe our approach in detail. Recall that given a question, the goal
of our agent is to predict a sequence of navigation subgoals and execute them
to ultimately find the target object and respond with the correct answer. We
first present our modular hierarchical policy. We then describe how we extract
optimal plans from shortest path navigation trajectories for behavior cloning.
And finally, we describe how the various modules are combined and trained
with a combination of imitation learning (behavior cloning) and reinforcement
learning.

3.1 Hierarchical Policy

Notation. Recall that NMC has 2 levels in the hierarchy – a master policy
that generates subgoals and sub-policies for each of these subgoals. We use i
to index the sequence of subgoals and t to index actions generated by sub-
policies. Let S “ tsu denote the set of states, G “ tgu the set of variable-time
subgoals with elements g “ xgtask, gargumenty, e.g . g “ xexit-room,None y, or g “
xfind-room,bedroom y. Let A “ tau be the set of primitive actions (forward,
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turn-left, turn-right). The learning problem can then be succinctly put as
learning a master policy πθ : S Ñ G parameterized by θ and sub-policies πφg

:
S Ñ AYtstopu parameterized by φg, @g P G, where the stop action terminates
a sub-policy and returns control to the master policy.

While navigating an environment, control alternates between the master pol-
icy selecting subgoals and sub-policies executing these goals through a series of
primitive actions. More formally, given an initial state s0 the master policy pre-
dicts a subgoal g0 „ πθpg|s0q, the corresponding sub-policy executes until some
time T0 when either (1) the sub-policy terminates itself by producing the stop

token aT0
„ πφg0

pa|sT0
q “ stop or (2) a maximum number of primitive actions

has been reached. Either way, this returns the control back to the master policy
which predicts another subgoal and repeats this process until termination. This
results in a state-subgoal trajectory:

Σ “

ˆ

s0, g0
ljhn

subgoal 0

, sT0
, g1

l jh n

subgoal 1

, . . . , sTi
, gi`1

l jh n

subgoal i

, . . . , sTT ´1
, gT

l jh n

subgoal T

˙

(1)

for the master policy. Notice that the terminal state of the ith sub-policy sTi

forms the state for the master policy to predict the next subgoal gi`1. For the
pi` 1qth subgoal gi`1, the low-level trajectory of states and primitive actions is
given by:

σgi`1
“

ˆ

sTi
, aTi

l jh n

action 0

, sTi`1, aTi`1
l jh n

action 1

, . . . , sTi`t, aTi`t
l jh n

action t

, . . . , sTi`1

˙

. (2)

Note that by concatenating all sub-policy trajectories in order pσg0 , σg1 , . . . , σgT q,
the entire trajectory of states and primitive actions can be recovered.

Subgoals xTasks, Argumentsy. As mentioned above, each subgoal is factor-
ized into a task and an argument g “ xgtask, gargumenty. There are 4 possible
tasks – exit-room, find-room, find-object, and answer. Tasks find-object

and find-room accept as arguments one of the 50 objects and 12 room types
in EQA v1 dataset [1] respectively; exit-room and answer do not accept any
arguments. This gives us a total of 50` 12` 1` 1 “ 64 subgoals.

xexit-room,none y, xanswer,none y
(

0 args

xfind-object,couch y, . . . , xfind-object,xbox y
(

50 args

xfind-room,living y, . . . , xfind-room,patio y
(

12 args

Descriptions of these tasks and their success criteria are provided in Table 1.

Master Policy. The master policy πθ parameterized by θ is implemented as a
single layer Gated Recurrent Unit (GRU). At each high-level step i`1, the master
policy πθpg|sTi

q takes as input the concatenation of a encoding of the question
q P R128, the image feature vTi

P R128 of the current frame and an encoding
oi P R32 computed from a 1-hot representation of the ith subgoal, i.e. 1pgiq.
This information is used to update the hidden state hi P R1048 that encodes the
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Subgoal Argument(s) Description Success

Exit-room None When there is only 1 door in
spawn room, or 1 door other
than door entered through in
an intermediate room; agent
is forced to use the remaining
door.

Stopping after exit-
ing through the cor-
rect door.

Find-room Room name
(gym, kitchen, ...)

When there are multiple doors
and the agent has to search
and pick the door to the tar-
get room.

Stopping after enter-
ing target room.

Find-object Object name

(oven, sofa, ...)
When the agent has to search
for a specific object in room.

Stopping within
0.75m of the target
object.

Answer None When the agent has to pro-
vide an answer from the an-
swer space.

Generating the cor-
rect answer to the
question.

Table 1: Descriptions of our subgoals and conditions we use to extract them automat-
ically from expert trajectories.

entire trajectory up to time t and serves as the state representation. The policy
then produces a probability distribution over all possible (64) subgoals G. We
train these policies with actor-critic methods and thus the network also produces
a value estimate.

Sub-policies. To take advantage of the comparatively lower number of subgoal
tasks, we decompose sub-policy parameters φg into φgtask and φgargument , where
φgtask are shared across the same task and φgargument is an argument specific
embedding. Parameter sharing enables us to learn the shared task in a sample-
efficient manner, rather than exhaustively learning separate sub-policies for each
combination.

Like the master policy, each sub-policy πφg
is implemented as a single-layer

GRU. At each low-level time step t, a sub-policy πφg pa|stq takes as input the
concatenation of the image feature vt P R128 of the current frame, an encoding
pt´1 P R32 computed from a 1-hot representation of the previous primitive action
i.e. 1pat´1q, and the argument embedding φgargument . These inputs are used to
update the hidden state hgt P R1048 which serves as the state representation. The
policy then outputs a distribution over primitive actions (forward, turn-left,

turn-right, stop). As with the master policy, each sub-policy also output a
value estimate. shows this model structure.

Perception and Question Answering. To ensure fair comparisons to prior
work, we use the same perception and question answering models as used by
Das et al . [1]. The perception model is a simple convolutional neural network
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trained to perform auto-encoding, semantic segmentation, and depth estima-
tion from RGB frames taken from House3D [2]. Like [1], we use the bottleneck
layer of this model as a fixed feature extractor. We also use the same post-
navigational question-answering model as [1], which encodes the question with a
2-layer LSTM and performs dot-product based attention between the question
encoding and the image features from the last five frames along the navigation
path right before the answer module is called. This post-navigational answering
module is trained using visual features along the shortest path trajectories and
then frozen. By keeping these parts of the architecture identical to [1], our exper-
imental comparisons can focus on the differences only due to our contributions,
the Neural Modular Controller.

3.2 Hierarchical Behavior Cloning from Expert Trajectories

The questions in EQA v1 dataset [1] (e.g . ‘What color is the fireplace?’ ) are
constructed to inquire about attributes (color, location, etc.) of specific target
objects (‘fireplace’ ). This notion of a target enables the construction of an auto-
matically generated expert trajectory ps˚

0 , a
˚
0 , . . . , s

˚
T , a

˚
T q – the states and actions

along the shortest path from the agent spawn location to the object of interest
specified in the question. Notice that these shortest paths may only be used as
supervision on training environments but may not be utilized during evalua-
tion on test environments (where the agent must operate from egocentric vision
alone).

Specifically, we would like to use these expert demonstrations to pre-train our
proposed NMC navigator using behavior cloning. However, these trajectories
ps˚

0 , a
˚
0 , . . . , s

˚
T , a

˚
T q correspond to a series of primitive actions. To provide super-

vision for both the master policy and sub-policies, these shortest-path trajec-
tories must be annotated with a sequence of subgoals and segmented into their
respective temporal extents, resulting in Σ˚ and pσ˚

giq.

bedroom bedroom

hall

kitchen bathroom

living	
room

Exit-room

Find-room[living]

Find-object[fireplace]

(a) Q: What color is the fireplace? A:
Brown

(b) Distribution of subgoals with number of
actions from the target object as per expert
plans. Closer to the target object, the expert
plan predominantly consists of Find-object,
while as we move farther away, the proportion
of Find-room and Exit-room goes up.

Fig. 2: We extract expert subgoal trajectories from shortest paths by dividing paths on
room transition boundaries (circled in (a))and following the rules in Tab. 1.

We automate this ‘lifting’ of annotation up the hierarchy by leveraging the ob-
ject and room bounding boxes provided by the House3D [2]. Essentially, a floor
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plan may be viewed as an undirected graph with rooms as nodes and door-
ways as edges connecting a pair of adjacent rooms. An example trajectory is
shown in Fig. 2a for the question ‘What color is the fireplace?’. The agent is
spawned in a bedroom, the shortest path exits into the hall, enters the liv-
ing room, and approaches the fireplace. We convert this trajectory to the sub-
goal sequence (exit-room, find-room[living ], find-object[fireplace ],

answer) by recording the transitions on the shortest path from one room to an-
other, which also naturally provides us with temporal extents of these subgoals.

We follow a couple of subtle but natural rules: (1) find-object is tagged only
when the agent has reached the destination room containing the target object;
and (2) exit-room is tagged only when the ‘out-degree’ of the current room in
the floor-plan-graph is exactly 1 (i.e. either the current room has exactly one
doorway or the current room has two doorways but the agent came in through
one). Rule (2) ensures a semantic difference between exit-room and find-room –
informally, exit-room means ‘get me out of here’ and find-room[name ] means
‘look for room name’.

Tab. 1 summarizes these subgoals and the heuristics used to automatically ex-
tract them from navigational paths. Fig. 2b shows the proportions of these sub-
goals in expert trajectories as a function of the distance from target object.
Notice that when the agent is close to the target, it is likely to be within the
same room as the target and thus find-object dominates. On the other hand,
when the agent is far away from the target, find-room and exit-room dominate.

We perform this lifting of shortest paths for all training set questions in EQA
v1 dataset [1], resulting in N expert trajectories tΣ˚

nu
N
n“1 for the master policy

and Kpąą Nq trajectories tσ˚
gk
uKk“1 for sub-policies. We can then perform hier-

archical behavior cloning by minimizing the sum of cross-entropy losses over all
decisions in all expert trajectories. As is typical in maximum-likelihood training
of directed probabilistic models (e.g . hierarchical Bayes Nets), full supervision re-
sults in decomposition into independent sub-problems. Specifically, with a slight
abuse of notation, let ps˚

i , g
˚
i`1q P Σ

˚ denote an iterator over all state-subgoal

tuples in Σ˚, and
ÿ

ps˚
i ,g

˚
i`1qPΣ

˚

denote a sum over such tuples.

Now, the independent learning problems can be written as:

θ˚ “ argmin
θ

N
ÿ

n“1

ÿ

ps˚
i ,g

˚
i`1qPΣ

˚
n

´ log
´

πθpg
˚
i`1|s

˚
i q

¯

(master policy cloning)

(3a)

φ˚g “ argmin
φ

K
ÿ

k“1

rrgk “ gss

l jh n

demonstrations

ÿ

ps˚
t ,a

˚
t`1qPσ

˚
gk

l jh n

transitions

´ log
´

πφg pa
˚
t`1|s

˚
t q

¯

l jh n

negative-log-likelihood

(sub-policy cloning)

(3b)
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Intuitively, each sub-policy independently maximizes the conditional probability
of actions observed in the expert demonstrations, and the master policy essen-
tially trains assuming perfect sub-policies.

3.3 Asynchronous Advantage Actor-Critic (A3C) Training

After the independent behavior cloning stage, the policies have learned to mimic
expert trajectories; however, they have not had to coordinate with each other
or recover from their own navigational errors. As such, we fine-tune them with
reinforcement learning – first independently and then jointly.

Reward Structure. The ultimate goal of our agent is to answer questions ac-
curately; however, doing so requires navigating the environment sufficiently well
in search of the answer. We mirror this structure in our reward R, decomposing
it into a sum of a sparse terminal reward Rterminal for the final outcome and a
dense, shaped reward Rshaped [38] determined by the agent’s progress towards its
goals. For the master policy πθ, we set Rterminal to be 1 if the model answers the
question correctly and 0 otherwise. The shaped reward Rshaped at master-step
i is based on the change of navigable distance to the target object before and
after executing subgoal gi. Each sub-policy πφg

also has a terminal 0/1 reward
Rterminal for stopping in a successful state, e.g . Exit-room ending outside the
room it was called in (see Tab. 1 for all success definitions). Like the master pol-
icy, Rshaped at time t is set according to the change in navigable distance to the
sub-policy target (e.g . a point just inside a living room for find-room[living ])
after executing the primitive action at. Further, sub-policies are also penalized
a small constant (-0.02) for colliding with obstacles.

Policy Optimization. We update the master and sub-policies to minimize ex-
pected discounted future rewards Jpπθq and Jpπφg q respectively through the
Asynchronous Advantage Actor Critic [15] policy-gradient algorithm. Specifi-
cally, for the master policy, the gradient of the expected reward is written as:

∇θJpπθq “ E r∇θ logpπθpgi|sTiqq pQpsTi , giq ´ cθpsTiqqs (4)

where cθpsTiq is the estimated value of sTi produced by the critic for πθ. To
further reduce variance, we follow [39] and estimate QpsTi , giq « RθpsTiq `

γcθpsTi`1q such that QpsTi , giq ´ cθpsTiq computes a generalized advantage esti-
mator (GAE). Similarly, each sub-policy πφg is updated according to the gradient

∇φg
Jpπφg

q “ E
“

∇θ logpπφg
pai|siqq

`

Qpsi, aiq ´ cφg
psiq

˘‰

. (5)

Recall from Section 3.1 that these critics share parameters with their correspond-
ing policy networks such that subgoals with a common task also share a critic.
We train each policy network independently using A3C [15] with GAE [39] with
8 threads across 4 GPUs. After independent reinforcement fine-tuning of the
sub-policies, we train the master policy further using the trained sub-policies
rather than expert subgoal trajectories.

Initial states and curriculum. Rather than spawn agents at fixed distances
from target, from where accomplishing the subgoal may be arbitrarily difficult,
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(a) Exit-room (b) Find-room (c) Find-object
(d) Loss curves for mas-
ter policy

Fig. 3: (a,b,c) Success rate over training iterations for each sub-policy task using be-
havior cloning (BC), reinforcement learning from scratch (A3C), and reinforcement
finetuning after behavior cloning (BC+A3C) training regimes. We find BC+A3C sig-
nificantly outperforms either BC or A3C alone. Each of these is averaged over 5 runs.
(d) Losses for master policy during behavior cloning i.e. assuming access to perfect
sub-policies.

we sample locations along expert trajectories for each question or subgoal. This
ensures that even early in training, policies are likely to have a mix of positive
and negative reward episodes. At the beginning of training, all points along the
trajectory are equally likely; however, as training progresses and success rate
improves, we reduce the likelihood of sampling points nearer to the goal. This is
implemented as a multiplier α on available states rs0, s1, ..., sαT s, initialized to
1.0 and scaled by 0.9 whenever success rate crosses a 40% threshold.

4 Experiments and Results

Dataset. We benchmark performance on the EQA v1 dataset [1], which con-
tains „9, 000 questions in 774 environments – split into 7129p648q / 853p68q /
905p58q questions (environments) for training/validation/testing respectively1.
These splits have no overlapping environments between them, thus strictly check-
ing for generalization to novel environments. We follow the same splits.

Evaluating sub-policies. We begin by evaluating the performance of each sub-
policy with regard to its specialized task. For clarity, we break results down by
subgoal task rather than for each task-argument combination. We compare sub-
policies trained with behavior cloning (BC), reinforcement learning from scratch
(A3C), and reinforcement fine-tuning after behavior cloning (BC+A3C). We
also compare to a random agent that uniformly samples actions including stop

to put our results in context. For each, we report the success rate (as defined in
Tab. 1) on the EQA v1 validation set which consists of 68 novel environments
unseen during training. We spawn sub-policies at randomly selected suitable
rooms (i.e. Find-object[sofa ] will only be executed in a room with a sofa) and
allow them to execute for a maximum episode length of 50 steps or until they
terminate.

1 Note that the size of the publicly available dataset on embodiedqa.org/data is larger
than the one reported in the original version of the paper due to changes in labels
for color questions.

embodiedqa.org/data
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Navigation QA

d0 (For reference) dT (Lower is better) d∆ (Higher is better) accuracy (Higher is better)

T´10 T´30 T´50 T´10 T´30 T´50 T´10 T´30 T´50 T´10 T´30 T´50

PACMAN (BC) [1] 1.15 4.87 9.64 1.19 4.25 8.12 -0.04 0.62 1.52 48.48% 40.59% 39.87%

PACMAN (BC+REINFORCE) [1] 1.15 4.87 9.64 1.05 4.22 8.13 0.10 0.65 1.51 50.21% 42.26% 40.76%

NMC (BC) 1.15 4.87 9.64 1.44 4.14 8.43 -0.29 0.73 1.21 43.14% 41.96% 38.74%

NMC (BC+A3C) 1.15 4.87 9.64 1.06 3.72 7.94 0.09 1.15 1.70 53.58% 46.21% 44.32%

Table 2: Evaluation of EmbodiedQA agents on navigation and answering metrics for
the EQA v1 test set.

Fig. 3 shows success rates for the different subgoal tasks over the course of
training. We observe that:

- Behavior cloning (BC) is more sample-efficient than A3C from
scratch. Sub-policies trained using BC improve significantly faster than A3C
for all tasks, and achieve higher success rates for Exit-room and Find-room.
Interestingly, this performance gap is larger for tasks where a random policy
does worse – implying that BC helps more as task complexity increases.

- Reinforcement Fine-Tuning with A3C greatly improves over BC
training alone. Initializing A3C with a policy trained via behavior cloning
results in a model that significantly outperforms either approach on its own,
nearly doubling the success rate of behavior cloning for some tasks. Intuitively,
mimicking expert trajectories in behavior cloning provides dense feedback for
agents about how to navigate the world; however, agents never have to face
the consequences of erroneous actions e.g . recovering from collisions with
objects – a weakness that A3C fine-tuning addresses.

Evalating master policy. Next, we evaluate how well the master policy per-
forms during independent behavior cloning on expert trajectories i.e. assuming
perfect sub-policies, as specified in Eq. 3a. Even though there is no overlap be-
tween training and validation environments, the master policy is able to general-
ize reasonably and gets „ 48% intersection-over-union (IoU) with ground truth
subgoal sequences on the validation set. Note that a sequence of sub-goals that
is different from the one corresponding to the shortest path may still be success-
ful at navigating to the target object and answering the question correctly. In
that sense, IoU against ground truth subgoal sequences is a strict metric. Fig. 3d
shows the training and validation cross-entropy loss curves for the master policy.

Evalating NMC. Finally, we put together the master and sub-policies and
evaluate navigation and question answering performance on EmbodiedQA. We
compare against the PACMAN model proposed in [1]. For accurate comparison,
both PACMAN and NMC use the same publicly available and frozen pretrained
CNN2, and the same visual question answering model – pretrained to predict
answers from last 5 observations of expert trajectories, following [1]. Agents are
evaluated by spawning 10, 30, or 50 primitive actions away from target, which
corresponds to distances of 1.15, 4.87, and 9.64 meters from target respectively,
denoted by d0 in Tab. 2. When allowed to run free from this spawn location,

2 github.com/facebookresearch/EmbodiedQA

github.com/facebookresearch/EmbodiedQA
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dT measures final distance to target (how far is the agent from the goal at
termination), and d∆ “ dT ´ d0 evaluates change in distance to target (how
much progress does the agent make over the course of its navigation). Answering
performance is measured by accuracy (i.e. did the predicted answer match
ground-truth). Accuracies for PACMAN are obtained by running the publicly
available codebase released by authors2, and numbers are different than those
reported in the original version of [1] due to changes in the dataset1.

As shown in Tab. 2, we evaluate two versions of our model – 1) NMC (BC)
naively combines master and sub-policies without A3C finetuning at any level
of hierarchy, and 2) NMC (BC+A3C) is our final model where each stage is
trained with BC+A3C, as described in Sec. 3. As expected, NMC (BC) per-
forms worse than NMC (BC + A3C), evident in worse navigation dT, d∆ and
answering accuracy. PACMAN (BC) and NMC (BC) go through the same
training regime, and there are no clear trends as to which is better – PACMAN
(BC) has better d∆ and answering accuracy at T´10 and T´50, but worse at
T´30. No A3C finetuning makes it hard for sub-policies to recover from erroneous
primitive actions, and for master policy to adapt to sub-policies. A3C finetuning
significantly boosts performance, i.e. NMC (BC + A3C) outperforms PACMAN
with higher d∆ (makes more progress towards target), lower dT (terminates
closer to target), and higher answering accuracy. This gain primarily comes
from the choice of subgoals and the master policy’s ability to explore over this
space of subgoals instead of primitive actions (as in PACMAN), enabling the
master policy to operate over longer time horizons, critical for sparse reward
settings as in EmbodiedQA.

5 Conclusion

We introduced Neural Modular Controller (NMC), a hierarchical policy for Em-
bodiedQA consisting of a master policy that proposes a sequence of semantic
subgoals from question (e.g . ‘What color is the sofa in the living room?’ Ñ
Find-room[living], Find-object[sofa], Answer), and specialized sub-policies for
executing each of these tasks. The master and sub-policies are trained using a
combination of behavior cloning and reinforcement learning, which is dramati-
cally more sample-efficient than each individual training regime. In particular,
behavior cloning provides dense feedback for how to navigate, and reinforcement
learning enables policies to deal with consequences of their actions, and recover
from errors. The efficacy of our proposed model is demonstrated on the EQA v1
dataset [1], where NMC outperforms prior work both in navigation and question
answering.
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