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Abstract

We present MINOS, a simulator designed to support the development of multisensory models for
goal-directed navigation in complex indoor environments. The simulator leverages large datasets
of complex 3D environments and supports flexible configuration of multimodal sensor suites. We
use MINOS to benchmark deep-learning-based navigation methods, to analyze the influence of
environmental complexity on navigation performance, and to carry out a controlled study of multi-
modality in sensorimotor learning. The experiments show that current deep reinforcement learning
approaches fail in large realistic environments. The experiments also indicate that multimodality is
beneficial in learning to navigate cluttered scenes. MINOS is released open-source to the research
community at http://minosworld.org.

1. Introduction

Skillful mobile operation in three-dimensional environments has long been posited as an essential
milestone on the road to general intelligence (Moravec, 1984). Despite extensive research, navi-
gation remains a challenging problem. Classical approaches, based on simultaneous localization
and mapping (Durrant-Whyte and Bailey, 2006), are sensitive to noisy sensory input and changes
in the environment. Recent deep-learning-based methods are potentially more robust, but require
extensive training and have only been demonstrated to perform well in simple three-dimensional
mazes (Mnih et al., 2016).

A key bottleneck for developing and benchmarking approaches to sensorimotor control is the
logistical difficulty of operating a mobile agent in the physical world. The physical world is con-
strained to operate in real time; poor performance can cause breakage that requires repairing or
replacing the physical system; and the system may need to be supervised by a human during the
learning process. Moreover, in order to ensure proper generalization, a control system must be
evaluated in a wide variety of environments.

Due to these limitations, sensorimotor control models are often developed and benchmarked in
simulation (Gupta et al., 2017; Zhu et al., 2017). Once a promising model has been developed and
validated, it can be transferred to the physical world (Pomerleau, 1988; Sadeghi and Levine, 2017).
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The transfer is more likely to succeed if the simulator provides a wide range of large and realistic
three-dimensional environments.

In this paper, we present MINOS (Multimodal Indoor Simulator) – a simulation framework
for indoor environments that is designed to support the development and validation of multisen-
sory models for navigation. MINOS has been designed with several desiderata in mind. First, the
simulator provides access to a large number of realistic environments: the SUNCG dataset of more
than 45,000 three-dimensional models of furnished houses (Song et al., 2017) and the Matterport3D
dataset of reconstructed indoor scenes (Chang et al., 2017). Second, the simulator supports flexible
multimodal sensing, including vision, depth, surface normals, touch (contact forces), and semantic
segmentation. The number of sensors, their positions, and their parameters can be easily specified
by the client. Third, our simulation framework allows for procedural reconfiguration of the environ-
ments by programmatic modification of scene composition and appearance. Finally, the rendering
framework is specifically set up to provide high frame-rates – hundreds of frames per second on
a typical workstation – to support approaches that consume millions of simulation steps during
training.

We use MINOS to set up a benchmark for indoor navigation algorithms. First, we establish fixed
train/validation/test splits of varying complexity on both SUNCG and Matterport3D. This allows for
controlled investigation of the generalization of learning-based methods. Second, we set up three
goal-directed navigation tasks: PointGoal, ObjectGoal, and RoomGoal. The first involves a purely
spatial goal specification, while the latter two specify an object type or room type as the goal. In the
PointGoal task, the agent is provided with a vector pointing towards the goal; in the physical world
this signal may be provided by an indoor GPS system. The semantic goal tasks provide the agent
with semantic information regarding the goal: a room type (kitchen, bedroom, etc.) or an object
type (television, mug, etc.). This type of command may be provided by a human user interacting
with the agent.

Using the presented benchmark, we conduct a controlled study of approaches to sensorimotor
learning. We evaluate several deep reinforcement learning algorithms that navigate towards distal
goals using different combinations of sensory modalities. We find that complex realistic environ-
ments present a significant challenge for existing algorithms. For example, in furnished medium-
scale Matterport3D scenes, the most successful methods complete the PointGoal task in at most
20% of trials. The performance on the RoomGoal task is even worse: even in small Matterport3D
scenes, the best methods complete the task in only 14% of trials.

Experiments with varying sensory modalities demonstrate that depth and touch are particularly
powerful and can be individually more effective than vision for learning to navigate indoor scenes.
Combinations of sensory modalities are more effective still, especially in cluttered environments.

These experiments illustrate the utility of the presented simulation framework for sensorimotor
learning research. To support further research in this direction, MINOS is released open-source to
the research community at http://minosworld.org.

2. Related Work

Simulation is an established approach to developing, training, and benchmarking sensorimotor con-
trol models. The Arcade Learning Environment (Bellemare et al., 2013) simulates two-dimensional
Atari games and has been instrumental in the recent surge of interest in deep reinforcement learn-
ing (Mnih et al., 2015, 2016). The ELF platform (Tian et al., 2017) allows for efficient simulation
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Simulator Agent Modalities Framerate Environment Dataset size

Gazebo articulated sensor 10s+ FPS indoor few environments(Koenig and Howard, 2014) plugins + outdoor
Project Malmo continuous color 10s+ FPS Minecraft few environments(Johnson et al., 2016) /discrete
ViZDoom continuous color, depth, segm 1000s+ FPS stylized mazes few mazes(Kempka et al., 2016)
DeepMind Lab continuous color, depth 100s+ FPS stylized mazes few mazes
(Beattie et al., 2016) + procedural
AI2-THOR continuous color 100s+ FPS indoor 32 rooms(Zhu et al., 2017) /discrete (synthetic)
CMP discrete color, depth 10s+ FPS indoor 6 floors(Gupta et al., 2017) (reconstructed)
CAD2RL continuous color, depth 100s+ FPS indoor 12 corridors
(Sadeghi and Levine, 2017) (synthetic) + variations

MINOS
continuous reconfigurable 100s+ FPS indoor 45K houses

/discrete multimodal (synthetic+reconstructed) + variations

Table 1: A comparison of MINOS to other simulation environments.

of 2D real-time strategy games. Project Malmo enables simulated agents to interface with the game
Minecraft (Johnson et al., 2016). The TORCS (Wymann et al., 2014) and CARLA (Dosovitskiy
et al., 2017) simulators have been used to study autonomous driving policies. UAV control has been
studied using AirSim (Shah et al., 2017) and UE4Sim (Müller et al., 2017). The Gazebo simula-
tor (Koenig and Howard, 2014) has been used extensively in robotics research.

VizDoom (Kempka et al., 2016) and DeepMind Lab (Beattie et al., 2016) simulate stylized
immersive three-dimensional labyrinths. These come close to indoor navigation, but lack realism
in terms of layout and appearance, as well as the presence of objects in the scene. Our work is
distinguished from these in its focus on realistic indoor environments. This allows for development
and validation of sensorimotor control models that operate in realistic, cluttered indoor scenes.

Akin to our work, the AI2-THOR project focuses on realistic indoor environments (Zhu et al.,
2017). The goals of AI2-THOR and our work are aligned, but MINOS is distinguished in a number
of ways. First, we leverage large datasets, including thousands of furnished houses, with realistic
interconnected layouts of up to dozens of rooms each, as opposed to 32 single-room environments
provided by THOR. Second, we focus on flexibility of the agent’s sensor suite, both in terms of
the available sensors (vision, depth, surface normals, segmentation, touch) and their number and
parameters. Third, mindful of the data-hungry nature of many deep RL algorithms, MINOS was
developed to run at hundreds of simulation steps per second (rendering tens of millions of frames
per day) on typical workstations.

The development of MINOS was initiated in Fall 2016 and the core functionality was completed
by June 2017, at which time a version of this paper was submitted for conference publication. Since
then, a number of independent efforts have investigated navigation in indoor environments using
the SUNCG dataset (Wu et al., 2017; Brodeur et al., 2017; Das et al., 2017) and the Matterport3D
dataset (Anderson et al., 2017). MINOS is distinguished from these in several ways. First, our
simulation framework provides a flexible user API, allowing for (a) environment configuration via
object addition/removal and material variation, and (b) fully parameterized placement and speci-
fication of multimodal sensor suites with an arbitrary number of sensors. Second, in addition to
the simulator itself, we provide a set of specific benchmark tasks for navigation algorithms. Third,
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MINOS
Server

Web	client	API

Python	RL	API

AMT	crowdsourcing

OpenAI Gym	agent

UNREAL	agent

DFP	agent

Configuration	layer

Dataset	layer

Controlled	scene	selection
{source:"suncg", scenes:(s)=>s["nrooms"]==1 

&& s["ndoors"]>0}

Semantically	consistent	retexturing
{retexture:True, textureSet:"train"}

SUNCG Matterport3D

Object	variation	and	clutter	level	control
{hide:["chair","candle"]}

(a)	Environment (b)	Agent	controls (c) Sensors
Discrete	or	continuous	controls	for

discrete	navigation

…

{group:”vision", modes:[{type:"color", 
enc:"rgba"},{type:"depth", enc:”f32"},
{type:"normal", enc:"xyz"},
{type:"semantic", enc:"objectType"}], 
pos:[0,0.6,0], dir:[0,0,-1], 
res:[320,320]},
{type:"force", pos:[0,-0.25,0], 
dir:[0,0,1], radial:[0.25,4,0,6.28], 
enc: "contact"},{type:"gps", enc:"d_xz"}

"stepAcceleration": 40,
"turnAcceleration": 157.1, 
"angularFriction":1,
"angularResolution": 0.785

continuous	navigation
"stepAcceleration": 20,
"turnAcceleration": 12.1,
"angularFriction":1,
"angularResolution": 0.01

Color Depth Force

ObjectTypeNormal GPS

Figure 1: Overview of the MINOS framework and APIs. Our framework can source environments
from datasets such as SUNCG and Matterport3D, and is accessible both through an RL API and a
web client API. (a) Environment configuration. The scripts shown here select all single-room scenes
in the SUNCG database for training, enable semantically consistent retexturing, and remove chair
and candle objects. (b) Agent controls configuration, with adjustable discrete and continuous navi-
gation parameters resulting in the demonstrated agent trajectories. (c) Agent sensor configuration,
which specifies a set of vision, depth, normal, semantic, contact force, and GPS sensors.

MINOS supports navigation with both continuous and discrete state spaces in both SUNCG and
Matterport3D environments.

We leverage the simulator to study the performance of learning-based navigation agents in clut-
tered indoor environments. Recent work on visual navigation used an actor-critic model that dis-
cretizes the agent and state space (Zhu et al., 2017) and explored explicit map representations for
planning (Gupta et al., 2017). Other work uses auxiliary tasks or secondary prediction targets to
assist learning (Jaderberg et al., 2017; Mirowski et al., 2017). Direct prediction of future measure-
ments or rewards also appears effective for sensorimotor learning in immersive environments (Doso-
vitskiy and Koltun, 2017). All these methods have been developed in different environments, which
lack in either realism or scale. Our work provides a fair comparison of a representative set of state-
of-the-art deep navigation models in large, complex, and diverse indoor environments.

3. Simulation Framework

MINOS is a flexible, efficient, and customizable framework for simulation of large-scale indoor
environments. Figure 1 provides an overview of the framework. We now describe the components
of the system in detail.
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3.1 Simulator API

The MINOS simulator API is designed to be flexible and easy to use. A generic dataset layer allows
the framework to source environments from the dataset pool. A flexible configuration API supports:

(a) Environment configuration by selecting subsets of environments with filters predicated on
properties of the house and the objects present, and programmatically creating variations of
the original scenes by re-texturing object surfaces in a semantically consistent fashion, as well
as removing or replacing furniture;

(b) Agent control configuration by choosing between discrete and continuous navigation with
a parameterized agent physical model;

(c) Generic sensor specification allowing for arbitrary configurations of sensors with custom
type, position, orientation, resolution, and encoding. Multiple concurrent sensor streams of
each type are supported.

The simulator is implemented in a server-client paradigm. The WebGL-based server is focused
on efficiency, and its instances can be deployed in parallel to servers on any OS. We offer two client
APIs: a Python wrapper designed to support efficient RL, and a web client that is particularly useful
for interactive exploration and crowdsourced data collection. Both the Python and web client APIs
communicate with backend instances through a WebSocket layer, allowing for distributed training.

3.2 Environments

MINOS supports navigation in arbitrary environments. At the time of writing, the simulator pro-
vides immediate support for two datasets: the SUNCG dataset of synthetic furnished houses (Song
et al., 2017) and the Matterport3D dataset of reconstructed real buildings (Chang et al., 2017). Ex-
ample scenes are shown in Figure 2.

The SUNCG dataset provides approximately 45,000 houses with more than 750K rooms of
different types. These models support long-range navigation across layouts that are complex both
on the inter-room (interconnected floor plans that require traversing from room to room to reach a
goal) and the intra-room scale (rooms are densely furnished and navigation requires maneuvering
among the furniture).

The Matterport3D dataset consists of 90 multi-floor residences with approximately 2,000 anno-
tated room regions. These residences are more realistic than the synthetic SUNCG houses, matching
the appearance and composition of real environments more closely. We use Matterport3D as a chal-
lenging testbed for RL navigation methods.

3.3 Agent

The agent is represented by a cylinder proxy geometry with parameterized height, radius and offset
from the ground. We define a set of control commands that inject linear or angular acceleration:
step forward, step back, turn left, turn right, look up, look down, strafe left, and strafe right. The
web client maps these commands to interactive keyboard control, whereas the RL API receives a
set of string identifiers (one for each command) to be applied in a given time step. Each command
is parameterized to allow for scaling of the applied acceleration.

The dynamics of the agent is further parameterized by mass, maximum linear and angular
speeds, and coefficient of friction. These parameters along with the simulation time-step dura-
tion can be set to implement continuous navigation agents, or to effectively discretize motion. For
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(a) 5-room SUNCG house (b) 10-room SUNCG house

(c) 10-room M3D house (d) 38-room M3D house

Figure 2: Example houses from our indoor navigation datasets. For each of the four environments,
we show an overhead view (top left), the same view with each room coded by a different color (top
right), and two first-person views from within the environment (bottom).

convenient and reproducible experimentation, we provide two pre-configured agents: a discrete
controls agent (effectively a discrete space gridworld agent) and a continuous controls agent.

3.4 Multimodal sensory inputs

Multimodal perception is crucial for development of sensorimotor skills in animals (Smith and
Gasser, 2005) and in artificial systems (Mirowski et al., 2017). To support research on multimodal
sensorimotor control, we provide a flexible generic sensory input specification API allowing for any
number of sensory inputs in a variety of modalities:

• Vision: implemented in WebGL through a real-time rasterization rendering engine. Supports
RGB and grayscale output in arbitrary resolutions.

• Depth: extracted from the rasterization depth buffer. Supports byte or short quantized values,
or floating point range in meters, and noise model specification.

• Surface normals: per-pixel normals computed from the 3D mesh of the environment.
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• Contact forces: collision detection of agent proxy geometry against 3D object meshes. Provides
collision impulse response forces at the positions of specified contact sensors.

• Semantic segmentation: per-pixel category labeling corresponding to fine-grained SUNCG and
Matterport3D category hierarchies, as well as per-instance labeling (instance segmentation).

• Measurements: agent velocity and acceleration, distance and direction to specified navigation
target (Euclidean distance and distance along shortest path), and normalized episode time (frac-
tion of episode time elapsed). These measurements can be used for debugging, visualization, or
as modality-agnostic training inputs that can indicate progress towards the goal.

3.5 Customization

MINOS also provides an API for introducing controlled variation in the environments and for defin-
ing a variety of navigation goals and corresponding tasks:

• Material variation: textures and colors can be sampled in a semantically consistent way (i.e.,
respecting the observation frequencies of given material textures and colors for each object in-
stance in the dataset). The variation can be set to respect the training/validation/test splits so as
to ensure that material configurations for particular objects are not shared between splits. This
functionality allows for significant augmentation of synthetic 3D environments. Such random-
ized retexturing has been used in the work of Dosovitskiy and Koltun (2017) and Sadeghi and
Levine (2017), and was shown to significantly aid generalization.

• Object clutter variation: sets of specified categories of objects can be removed from each
environment (e.g., all chairs and all tables).

• Navigation goal specification: goals can be specified as arbitrary points in space (randomly
sampled or manually placed), with threshold distances for success. Instances of an object cat-
egory or a room category can also be specified as goals. More specifically, any instance of a
category, a randomly selected instance, or the closest instance to the agent can be defined as the
goal.

• Task specification: the task to be performed by the agent is specified through an arbitrary
Python function that computes reward signals and episode success or failure given the agent’s
current and past observations, measurements, and state. For our experiments we implement the
navigate to X task as a distance check between the current agent position and the closest point
in the goal region (which is a point, an object, or a room).

4. Methods

We use MINOS to benchmark a set of recent navigation algorithms. We assume that an agent
interacts with the environment over discrete time steps in an episodic setup. Each episode of inter-
action with the environment ends after a maximum number of time steps T . At each time step t,
the agent receives an observation ot and a scalar reward rt from the environment. The observation
ot =

⌦
s1t , . . . , s

M
t

↵
is a tuple consisting of M raw sensory inputs s1t , . . . , sMt coming from different

modalities. Based on the observation, the agent takes an action at from a discrete action set A (we
discretize the continuous action space provided by the simulator).

We study four end-to-end navigation algorithms. The first three are based on asynchronous
advantage actor-critic (A3C) (Mnih et al., 2016). The fourth is Direct Future Prediction (Dosovitskiy
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and Koltun, 2017), which has shown good performance in a maze navigation task. Note that since
we consider agents acting in the continuous state space, we do not include the method of Gupta
et al. (2017), which assumes a discrete gridworld-like environment. We now describe the methods
in more detail.

Feedforward A3C is the most basic version of the asynchronous advantage actor-critic algorithm,
where a feedforward convolutional network is used as a function approximator. The agent is trained
to estimate two quantities. The first is the value function: the expected discounted sum of rewards
from the current moment until the end of the episode. The second is the policy: a distribution over
the set of actions, indicating the degree of benefit expected from each action. The value function
is trained via the multi-step Bellman equation – a recurrent relation stating that the expected cumu-
lative reward can be approximated as a sum of several rewards plus an agent’s estimate at a future
time step. The policy is trained to maximize the probability of actions leading to larger-than-average
rewards and to minimize the probability of actions leading to smaller-than-average rewards. This
is achieved via policy gradient with the value function serving as a baseline. Further details are
provided by Mnih et al. (2016).

LSTM A3C is an A3C agent in which the feedforward network is augmented by long short-term
memory (LSTM) units, trained via backpropagation through time. The vanilla A3C agent can only
behave reactively based on the current observation; such an agent is unable to build an internal
representation of the environment or execute temporally extended action sequences. LSTM provides
the agent with a simple memory, which can potentially help to alleviate these shortcomings of the
feedforward agent.

UNREAL is a version of LSTM A3C that is augmented with auxiliary unsupervised tasks. These
extra tasks provide additional training signals to the network, leading to improved convergence and
stability. The auxiliary tasks include: value function replay, reward prediction, and “pixel control”.
Further details are provided by Jaderberg et al. (2017).

DFP is the Direct Future Prediction algorithm (Dosovitskiy and Koltun, 2017). It differs from
the aforementioned methods in that it does not explicitly aim to maximize future rewards. Instead
it predicts future measurements – a set of low-dimensional sensory inputs. The actions are then
selected so as to maximize an objective function that is defined in terms of these measurements.
The method can be seen as Monte Carlo reinforcement learning with a decomposed reward. Further
details are provided by Dosovitskiy and Koltun (2017).

5. Experiments

We use MINOS to evaluate the methods summarized in Section 4. We compare the algorithms on
goal-directed navigation, with goals specified either by their location relative to the agent, or by their
semantic meaning. We evaluate the effectiveness of different combinations of sensory modalities
for navigation and measure the effect of environmental complexity on the methods’ performance. In
contrast with many previous works, we do not evaluate the agents in the same environment they were
trained in. Rather, we study generalization to previously unseen environments. Finally, we perform
our experiments in both SUNCG environments and Matterport3D environments to investigate how
algorithm performance is impacted by the domain difference between synthetic and reconstructed
scenes.
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5.1 Experimental setup

5.1.1 TASKS

Our goal-directed navigation tasks are set up as a sequence of trials. In each trial, the agent is initial-
ized at a random location in an indoor environment and has to reach a goal location. We experiment
with three ways of specifying goals: by their position relative to the agent (PointGoal), or by the se-
mantic category of the target object (ObjectGoal) or target room region (RoomGoal). In this work,
we specify the spatial goal using Euclidean distance and normalized direction to a randomly chosen
point. The room goal is specified as one of 9 distinct room classes (kitchen, bedroom, living room,
toilet, bathroom, dining room, office, hallway, and miscellaneous), and the object goal is specified
as an object class (we use doors as navigation targets in the reported experiments).

The agent is initialized at a random position and orientation in the free space of a house, and
is provided with a target point, room, or object to which it must navigate, specified by the distance
and direction towards the goal, or the semantic class of the room or object represented as a one-hot
vector. Each generated combination of start and goal positions is checked for navigability using a
tile-based shortest-path computation. The distance and direction measurements are the Euclidean
distance to the goal point, or to the closest point on the goal object or room. The trial ends once
the agent reaches the goal, or after a fixed timeout of 500 steps (corresponding to 50 s of simulated
time). During training, the agent performs 10 trials in each environment, before moving on to a new
randomly sampled environment.

5.1.2 ENVIRONMENTS

We establish specific subsets of environments for benchmarking indoor navigation. These were
selected manually by verifying the realism and traversability of each environment floorplan.

From the SUNCG dataset we select a subset of 500 single-floor houses of varying complexity,
with one to ten rooms per house. This dataset is split into 300/100/100 training, validation, and
test scenes. The houses consist of a total of 2,737 rooms, populated with 41,158 object instances
in a total floor area of approximately 110,000m2. On average, there are 5.5 rooms per house with
a mean floor area of 42m2 per room. Each house is populated with 82 objects on average. These
houses represent a variety of environments including family homes, offices, and public spaces such
as restaurants.

For the Matterport3D dataset, we adopt the training/validation/test split specified by the original
dataset (61/11/18). These environments comprise a total of 2,206 room regions in 190 floors.
On average, each house has 24.5 rooms and a floor area of 560m2, providing significantly larger
interconnected environments for navigation.

For the SUNCG dataset, we create two variants of each house with different complexity: an
empty variant in which the scenes are emptied of furniture and include only architectural elements
such as walls, ceilings, floors, doors, and windows, and a furnished variant in which the scenes
contain their full content except people and plants.

5.1.3 AGENT

The agent is represented by a cylinder proxy geometry with a height of 1.09m and a radius of
0.10m. We use a continuous state space in our experiments. The motion of the agent is governed by
simple rigid body physics. The actions available to the agent include linear acceleration in forward
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or backward direction, as well as angular acceleration towards left or right. We discretized the
action space into turn left, turn right, and move forward commands, which inject linear or angular
acceleration, with linear acceleration of 20m s-2, angular acceleration of 4⇡ rad s-2 (clockwise or
counterclockwise), and maximum speeds of 2m s-1 and 4⇡ rad s-1, respectively. These settings
produce linear steps of about 20 cm and turns of about 23�.

For the multimodal agent experiments, the agent is provided with combinations of vision, depth,
and contact sensors in addition to the goal signal. Vision is provided by a singe grayscale camera
located at height 1.09m and configured with a field of view of 90�. Images are fed to agents at
84⇥84 pixel resolution. The depth sensor is co-located with the vision sensor, and outputs ground-
truth depth in the [0, 10m] range, quantized to byte precision with no noise. Four contact-force
sensors are placed at height 0.3m above ground on the surface of the agent cylinder proxy geometry,
oriented in the four cardinal directions with respect to the agent. The contact sensor configuration
encodes collision impulse responses as a binary “contact” signal in each direction.

5.1.4 TRAINING DETAILS

The agents are trained and tested over episodes lasting up to 500 time steps, with 10 steps per second
of simulated time. Each agent is trained for a total of 13.2M time steps, corresponding to roughly
15 days of experience. Average training speed with four simulation threads is about 167 steps per
second, amounting to approximately 14.4M steps per day. We run four such training processes
(four simulation threads each) on a single Nvidia Titan X Pascal GPU, yielding a total of 57.6M
steps per day (668 steps per second).

We use an epsilon-greedy random exploration schedule, starting with a fully random policy
and decaying to approximately 10% probability of random actions by the end of training. The
navigation goal is chosen at random for each episode. The DFP agents are trained against a future
prediction loss with measurements at time t: mt = hdt, xt, zt, ti, where dt is the Euclidean distance
to the goal and (xt, zt) is the normalized 2D direction to the goal for the PointGoal task, or the
dot product of a one-hot representation of the room category in the RoomGoal task with the goal
room category. On-policy actions are chosen by selecting the action that minimizes an objective
with a linear combination of the predicted distance dt and the normalized time t with equal weight.
The temporal offsets {⌧1, . . . , ⌧n} are set to 1, 2, 4, 8, 16, and 32 steps. The A3C FF, A3C-LSTM
and UNREAL agents are all trained under a reward function computing the difference in Euclidean
distance to the goal dt and normalized time t for each time step (matching the objective used for the
DFP agent). We use the same training hyperparameters as reported by Jaderberg et al. (2017), but
with only four asynchronous threads. For the RoomGoal task, we provide the one-hot goal room
category vector as an additional input concatenated with the agent state.

5.2 Results

At test time, agents are tested for 10 episodes per scene, in a fixed permuted order of scenes with a
set of pre-sampled starting configurations selected to span a range of distances from the goal. Agent
performance is evaluated by the overall episode success rate (fraction of episodes ending with the
agent arriving at the goal), reported as percentage averaged over all testing episodes.

Table 2 shows the performance of the various navigation agents on goal-directed navigation
with variable goal specification (PointGoal or RoomGoal), environment complexity (size, presence
of furniture), and environment realism (synthetic or reconstructed). We now analyze these results.
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Environment Agent

Task Dataset Clutter Size Random A3C-FF A3C-LSTM DFP UNREAL

PointGoal SUNCG Empty Small 23.8 10.1 69.1 80.3 72.9
PointGoal SUNCG Empty Medium 8.6 7.2 57.4 64.1 63.2
PointGoal SUNCG Furnished Small 9.5 16.1 60.9 64.5 64.1
PointGoal SUNCG Furnished Medium 6.3 7.9 41.3 43.6 45.3

PointGoal Matterport3D Furnished Small 0.0 2.0 32.0 27.3 38.0

PointGoal Matterport3D Furnished Medium 0.0 2.0 0.0 18.2 20.0

RoomGoal SUNCG Furnished Small 10.0 25.7 30.0 22.5 58.6

RoomGoal SUNCG Furnished Medium 3.1 6.9 7.2 4.0 32.0

RoomGoal Matterport3D Furnished Small 5.0 12.0 14.0 13.6 14.0

Table 2: Average episode success rate for agents trained on PointGoal and RoomGoal tasks, tested
on novel environments of varying complexity. SUNCG ‘Small’ refers to two-room houses while
SUNCG ‘Medium’ contains three-to-five-room houses. Matterport3D ‘Small’ contains environ-
ments with up to 10 rooms, and Matterport3D ‘Medium’ refers to environments with up to 24
rooms. Note that all agents exhibit significant performance degradation as the size and complexity
of the environment increases.

Relative performance of the agents. On most tasks, the UNREAL agent performs best, followed
by DFP and A3C-LSTM. A3C-FF failed to learn any meaningful policy, and performs worse than
a random agent in some cases, which could be due to hyperparameter selection. Despite the lack of
memory, DFP outperforms A3C-LSTM and UNREAL for the smaller and less cluttered SUNCG
environments in point navigation. In more challenging setups using larger Matterport3D environ-
ments and for the semantic room navigation task, UNREAL significantly outperforms the other
approaches. This is likely due to the combination of memory and supervision through auxiliary
learning.

Environment complexity. The performance of all methods declines significantly in large and
cluttered environments. The best-performing agent in the PointGoal task is successful in about 80%
of trials in the simplest two-room empty SUNCG environments. However, in the most complex
PointGoal setup – Matterport 3D houses with up to 24 rooms – all agents have success rate of 20%
or lower. These results indicate that even in the simplest scenario the performance is not perfect,
and that existing RL methods fail in large, cluttered, realistic environments.

Spatial and semantic goals. The RoomGoal task is more difficult for all algorithms than Point-
Goal. This is likely due to the sparsity of the RoomGoal reward signal, which only indicates whether
the agent is in a room with a type matching the goal room type.

5.3 Navigation with multimodal sensory input

In the previous experiments, all agents were navigating based solely on visual input. We now com-
pare agents equipped with different sensor suites to investigate the impact of multimodal sensory
input on navigation performance in an ObjectGoal task where the navigation target is a randomly
chosen door. We adapt the visual DFP agent by providing alternative or additional modalities as
input to create several multimodal agents: target distance and direction measurements only; vision
only; depth only; contact force only; vision and contact force; vision, depth, and contact force. As
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empty room empty house furnished room furnished house

modalities success speed success speed success speed success speed

None 23.1 12.7 18.8 11.3 9.5 5.2 6.5 3.1
Measurements 90.6 68.1 66.5 49.5 46.2 27.2 25.8 12.2
M+Vision 86.8 71.2 68.7 53.7 48.4 38.6 30.4 19.6
M+Depth 92.7 77.6 74.8 63.7 64.2 51.7 43.7 28.5
M+Forces 96.7 78.7 70.3 56.3 56.0 37.8 39.9 29.1
M+V+F 94.8 80.4 74.3 61.1 54.4 41.7 41.8 29.3
M+D+V+F 94.4 80.0 78.1 65.3 64.7 52.4 48.0 35.0

Human 100.0 92.1 100.0 87.7 100.0 90.5 99.0 84.9

Table 3: Performance of trained multimodal DFP agents on novel SUNCG environments. ‘None’ is
a random policy (no perceptual input from the environment), ‘Human’ reports human performance
on one test episode of average difficulty per scene. The other rows report the performance of agents
equipped with different sets of perceptual modalities. Each pair of columns reports results in a
different setting. From left to right: empty single-room environments, empty houses (all), furnished
single-room environments, furnished houses (all). Note that the single-room environments are less
challenging than the small two-room environments in Table 2.

in prior experiments, agents are trained for 13.2M steps. Agent performance is evaluated by the
success rate, and by a speed measure which is the fraction of time left at the end of the episode (for
all episodes).

Table 3 reports the performance of each agent after training on several sets of novel environ-
ments with different complexity: empty single-room SUNCG environments, all empty SUNCG
houses, furnished single-room SUNCG environments, and all furnished SUNCG houses. In the
simplest setting of empty single-room environments, all agents do well. In particular, the com-
bination of measurements and contact force input performs best, likely due to the simplicity and
sufficiency of the goal direction and contact signals for navigating towards a single target door (usu-
ally unobstructed in this trivial setting). For empty multi-room houses (up to ten rooms each), the
depth modality performs particularly well, whereas the vision modality does not increase perfor-
mance significantly. This is likely due to the fact that in the absence of clutter, the additional benefit
of visual input is limited. The full multimodal agent outperforms the ablated versions in this set-
ting. The full multimodal agent likewise performs best in the furnished settings. Among individual
modalities in the furnished settings, depth confers the strongest advantage.

6. Discussion

We presented a multimodal simulation platform that is designed to support the development of
multisensory models for goal-directed navigation in indoor environments. Our simulator provides
a suite of sensory input modules that can be flexibly combined. By leveraging two large-scale
datasets of indoor environments and augmenting the data through controlled variation of appear-
ance and clutter, we provide orders of magnitude more indoor environments for training and testing
than previously available. Our experiments demonstrate that current deep reinforcement learning

12



approaches fail in large, realistic indoor environments, and that multimodality is beneficial in learn-
ing to act in cluttered indoor scenes.
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