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Abstract. Navigation guided by natural language instructions presents
a challenging reasoning problem for instruction followers. Here we de-
scribe a speaker-follower approach to this task with an embedded speaker
model. We use this speaker model to synthesize new instructions for data
augmentation and to implement pragmatic reasoning for evaluating can-
didate action sequences. Both steps are supported by a panoramic action
space that reflects the granularity of human-generated instructions. Ex-
periments show that our speaker-follower approach improves the perfor-
mance of a baseline instruction follower, more than doubling the success
rate over the best existing approach on a standard benchmark.

1 Introduction

In the vision-and-language navigation task [1], an agent is placed in a realistic
environment, and provided a natural language instruction such as “Go down the
stairs, go slight left at the bottom and go through door, take an immediate left
and enter the bathroom, stop just inside in front of the sink”. The agent must
follow this instruction to navigate from its starting location to a goal location, as
shown in Figure 1 (left). To accomplish this task the agent must learn to relate
the language instructions to the visual environment. Moreover, it should be able
to carry out new instructions in unseen environments.

In this paper we treat the vision-and-language navigation task as a trajec-
tory search problem, where the agent needs to find (based on the instruction)
the best trajectory in the environment to navigate from the start location to
the goal location. Our model involves an instruction interpretation (follower)
module, mapping instructions to action sequences; and an instruction generation
(speaker) module, mapping action sequences to instructions (Figure 1), both im-
plemented with standard sequence-to-sequence architectures. The speaker learns
to give textual instructions for visual routes, while the follower learns to follow
routes (predict navigation actions) for provided textual instructions.

We incorporate the speaker both at training time and at test time, where it
works together with the learned instruction follower model to solve the naviga-
tion task (see Figure 2 for an overview of our approach). At training time, we
perform speaker-driven data augmentation where the speaker helps the follower
by synthesizing additional route-instruction pairs to expand the limited training
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Fig. 1. The task of vision-and-language navigation is to perform a sequence of actions
(navigate through the environment) according to natural language instructions. Our
approach consists of an instruction follower model (left) and a speaker model (right).

data. At test time, the follower improves its chances of success by looking ahead
at possible future routes and pragmatically choosing the best route by scoring
them according to the probability that the speaker would generate the correct
instruction for each route. We construct both the speaker and the follower on top
of a panoramic action space that efficiently encodes high-level behavior, mov-
ing directly between adjacent locations rather than making low-level visuomotor
decisions like the number of degrees to rotate (see Figure 3).

An extended version of this paper with more details can be found in [2].

2 Related Work

Vision-and-language Navigation. The embodied vision-and-language navi-
gation task studied in this paper [1] differs from past situated instruction fol-
lowing tasks (e.g. [3,4,5,6]) by introducing rich visual contexts. Recent work [7]
has applied techniques from model-based and model-free reinforcement learning
[8] to the vision-and-language navigation problem. Specifically, an environment
model is used to predict a representation of the state resulting from an action,
and planning is performed with respect to this environment model. Our work
differs from this prior work in reasoning not just about state transitions, but also
about the relationship between states and the language that describes them.

Pragmatic language understanding. A long line of work in linguistics,
natural language processing, and cognitive science has studied pragmatics: how
linguistic meaning is affected by context and communicative goals [9]. Our work
here makes use of the Rational Speech Acts framework [10,11], which models
the interaction between speakers and listeners as a process where each agent
reasons probabilistically about the other to maximize the chances of successful
communicative outcomes. Similar modeling tools have recently been applied to
generation and interpretation of language about sequential decision-making [12].
The present work makes use of a pragmatic instruction follower in the same spirit.
Here, however, we integrate this with a more complex visual pipeline and use it
not only at inference time but also at training time to improve the quality of a
base listener model.

Semi- and self-supervision. The semi-supervised approach we use is re-
lated to model bootstrapping techniques such as self-training [13,14] and co-
training [15] at a high-level. The approach most relevant to our work is the SEQ4
model [16], which applies semi-supervision to a navigation task by sampling new
environments and maps (in synthetic domains without vision), and training an
autoencoder to reconstruct routes, using language as a latent variable. In this
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Fig. 2. Our approach combines an instruction follower model and a speaker model.
(a) The speaker model is trained on the ground-truth routes with human-generated
descriptions; (b) it provides the follower with additional synthetic instruction data to
bootstrap training; (c) it also helps the follower interpret ambiguous instructions and
choose the best route during inference. See Sec. 3 for details.

work, we use a speaker to synthesize additional navigation instructions on un-
labeled new routes, and use this synthetic data from the speaker to train the
follower. Our approach used here is much simpler, as it does not require con-
structing a differentiable surrogate to the decoding objective.

Grounding language in vision. Existing work in visual grounding has ad-
dressed the problem of passively perceiving a static image and mapping a referen-
tial expression to a bounding box [17,18,19] or a segmentation mask [20,21,22]. In
our work, the vision-and-language navigation task requires the agent to actively
interact with the environment to find a path to the goal following the natural lan-
guage instruction. This can be seen as a grounding problem in linguistics where
the instruction is grounded into a trajectory in the environment but requires
more reasoning and planning skills than referential expression grounding.

3 Instruction Following with Speaker-Follower Models

We address the task of following natural language instructions relying on two
models: an instruction-follower model of the kind considered in previous work,
and a speaker model—a learned instruction generator that models how humans
describe routes in navigation tasks. Specifically, we base our follower model on
a sequence-to-sequence model [1], computing a distribution PF (r|d) over routes
r (state and action sequences) given route descriptions d. Our speaker model is
symmetric, producing a distribution PS(d|r) by encoding the sequence of visual
observations and actions in the route, and then outputting an instruction word-
by-word with a decoder (Figure 1).

The speaker supports the follower both at training time and at test time.
First, we train a speaker model on the available ground-truth navigation routes
and instructions. (Figure 2 (a)). Before training the follower, the speaker pro-
duces synthetic navigation instructions for novel sampled routes in the training
environments, which are then used as additional supervision for the follower
(Figure 2 (b)). At follower test time, the speaker pragmatically ranks possible
routes produced by the follower model (Figure 2 (c)). Both follower and speaker
are supported by the panoramic action space (Figure 3).

Speaker-Driven Data Augmentation. The training data only covers a
limited number of navigation instruction and route pairs,D = (d1, r1) . . . (dN , rN ).
To allow the agent to generalize better to new routes, we use the speaker to gener-
ate synthetic instructions on sampled new routes in the training environments.
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We sample a collection of M routes r̂1, . . . , r̂M through the training environ-
ments, using the same shortest-path approach used to generate the routes in the
original training set [1]. We then generate a human-like textual instruction d̂k
for each instruction r̂k by performing greedy prediction in the speaker model to
approximate d̂k = arg maxd PS(d | r̂k). These M synthetic navigation routes and

instructions S = (d̂1, r̂1), . . . , (ŝM , r̂M ) are combined with the original training
data D into an augmented training set S ∪ D (Figure 2(b)).

Speaker-Driven Route Selection (Pragmatic Inference). We use the
base speaker (PS) and follower (PF ) models described above to define a prag-
matic follower model. Drawing on the Rational Speech Acts framework [10,11],
a pragmatic follower model should choose a route r that has high probabil-
ity of having caused the speaker model to produce the given description d:
arg maxr PS(d | r). Such a follower chooses a route that provides a good ex-
planation of the observed description, allowing counterfactual reasoning about
instructions, or using global context to correct errors in the follower’s path.

Following previous work on pragmatic language generation and interpretation
[23,24,25,12], we approximate this maximization using a rescoring procedure:
produce candidate route interpretations for a given instruction using the base
follower model, and then rescore these routes using the base speaker model
(Figure 2(c)). Our pragmatic follower produces a route for a given instruction
by obtaining K candidate paths from the base follower using a modified beam-
search procedure,then chooses the highest scoring path under a combination of
the follower and speaker model probabilities:

arg max
r∈R(d)

PS(d | r)λ · PF (r | d)(1−λ) (1)

where λ is a hyper-parameter in the range [0, 1] which we tune on validation data
to maximize the accuracy of the follower. To generate candidate routes from the
base follower model, we perform a modified beam-search procedure.

Panoramic Action Space. The sequence-to-sequence agent in [1] uses low-
level visuomotor control. In our work we directly allow the agent to reason about
high-level actions, using a panoramic action space with panoramic representa-
tion, converted with built-in mapping from low-level visuomotor control.

As shown in Figure 3, in our panoramic representation, the agent first “looks
around” and perceives a 360-degree panoramic view of its surrounding scene from
its current location, which is discretized into 36 view angles. Each view angle i is
represented by an encoding vector vi. At each location, the agent can only move
towards a few navigable directions (provided by the navigation environment).
Here, in our action space the agent only needs to make high-level decisions
as to which navigable direction to go to next, with each navigable direction j
represented by an encoding vector uj . The encoding vectors vi and uj of each
view angle and navigable direction are obtained by concatenating an appearance
feature and a 4-dimensional orientation feature [sinψ; cosψ; sin θ; cos θ], where
ψ and θ are the heading and elevation angles respectively. Also, we introduce a

“stop” action encoded by u0 =
−→
0 . The agent can take this stop action when it

decides it has reached the goal location (to end the episode).
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go towards this direction!

turn left turn left turn left turn left go forward

instruction: … Turn left and go towards the sofa ...

Low-level 
visuomotor space

Panoramic
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Fig. 3. Compared with low-level visuomotor space, our panoramic action space (Sec.
3) allows the agents to have a complete perception of the scene, and to directly perform
high-level actions.

To make a decision on which direction to go, the agent first performs one-
hop visual attention to look at all of the surrounding view angles, based on its
memory vector ht−1. The attention weight αt,i of each view angle i is computed

as at,i = (W1ht−1)
T
W2vt,i and αt,i = exp(at,i)/

∑
i exp(at,i). The attended

feature representation vt,att =
∑
i αt,ivt,i from the panoramic scene is then used

as visual-sensory input to the sequence-to-sequence model to update the agent’s
memory. Then, a bilinear dot product is used to obtain the probability pj of

each navigable direction j: yj = (W3ht)
T
W4uj , pj = exp(yj)/

∑
j exp(yj). The

agent then chooses a navigable direction uj (with probability pj) to go to the
adjacent location along that direction (or u0 to stop and end the episode).

4 Experiments

We use the Room-to-Room (R2R) vision-and-language navigation dataset [1]
for our experimental evaluation. Following previous work on the R2R task, our
primary evaluation metrics are navigation error (NE), success rate (SR) and
oracle success rate (OSR).

Ablation study. We study the impact of each component of our model on
the val seen (same environments as training split) and val unseen split (novel
environments not seen during training). In Table 1 (a), Row 1 is a baseline
which uses only a follower model with a non-panoramic action space at both
training and test time, almost equivalent to the student-forcing model in [1]
except for minor implementation details. Rows 2-4 show the effects of adding a
single component to the baseline system (Row 1); Rows 5-7 show the effects of
removing a single component from the full system (Row 8). It can be seen that
all components are important for the final performance.

Comparison to Prior Work. We compare the performance of our final
model to previous approaches on the R2R the test split (new environments not
overlapping with any training or validation splits). The results are shown in Ta-
ble 1 (b). In the table, “Random” is a baseline that randomly picks a direction
and goes toward that direction for 5 steps. “Student-forcing” is the best perform-
ing method in [1], using exploration during training of the sequence-to-sequence
follower model. “RPA” [7] is a combination of model-based and model-free re-
inforcement learning (see also Sec. 2 for details). “ours” shows our performance
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Data Pragmatic Panoramic Validation-Seen Validation-Unseen

# Augmentation Inference Space NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑

1 6.08 40.3 51.6 7.90 19.9 26.1

2 3 5.05 46.8 59.9 7.30 24.6 33.2
3 3 5.23 51.5 60.8 6.62 34.5 43.1
4 3 4.86 52.1 63.3 7.07 31.2 41.3

5 3 3 4.28 57.2 63.9 5.75 39.3 47.0
6 3 3 3.36 66.4 73.8 6.62 35.5 45.0
7 3 3 3.88 63.3 71.0 5.24 49.5 63.4

8 3 3 3 3.08 70.1 78.3 4.83 54.6 65.2

(a) Ablations showing the effect of each component in our model.

Validation-Seen Validation-Unseen Test (unseen)

Method NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑ NE ↓ SR ↑ OSR ↑ TL ↓

Random 9.45 15.9 21.4 9.23 16.3 22.0 9.77 13.2 18.3 9.89
Student-forcing [1] 6.01 38.6 52.9 7.81 21.8 28.4 7.85 20.4 26.6 8.13

RPA [7] 5.56 42.9 52.6 7.65 24.6 31.8 7.53 25.3 32.5 9.15

ours 3.08 70.1 78.3 4.83 54.6 65.2 4.87 53.5 63.9 11.63
ours (challenge participation)* – – – – – – 4.87 53.5 96.0 1257.38

Human – – – – – – 1.61 86.4 90.2 11.90

*: When submitting to the Vision-and-Language Navigation Challenge, we modified our beam search
procedure to maintain physical plausibility and to comply with the challenge guidelines. The resulting
trajectory has higher oracle success rate while being very long. See Appendix E in [2] for details.

(b) Comparison of our method to previous work.

Table 1. Ablations (a) and comparison with previous work (b). NE is navigation error
(lower is better). SR and OSR are success rate and oracle success rate (%) respectively
(higher is better). Trajectory length (TL) on the test set is reported for completeness.

using the route selected by our pragmatic inference procedure, while “ours (chal-
lenge participation)” uses a modified inference procedure for submission to the
Vision-and-Language Navigation Challenge (see Appendix E in [2] for details).
Our method more than doubles the success rate of the state-of-the-art RPA
approach, and on the test set achieves a final success rate of 53.5%, a large
reduction in the gap between machine and human performance on this task.

5 Conclusions

The language-and-vision navigation task presents a pair of challenging reasoning
problems: in language, because agents must interpret instructions in a chang-
ing environmental context; and in vision, because of the tight coupling between
local perception and long-term decision-making. The comparatively poor per-
formance of the baseline sequence-to-sequence model for instruction following
suggests that more powerful modeling tools are needed to meet these challenges.
In this work, we have introduced such a tool, showing that a follower model for
vision-and-language navigation is substantially improved by carefully structur-
ing the action space and integrating an explicit model of a speaker that predicts
how navigation routes are described. We believe that these results point toward
further opportunities for improvements in instruction following by modeling the
global structure of navigation behaviors and the pragmatic contexts in which
they occur.
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