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Computational Cognition, Vision, and Learning

Some History

• Huge annotated datasets have lead to immense improvements in 
computer vision.

• In 1990’s, papers could be tested on as few as five images.
• In 2000’s, annotated datasets started becoming common.
• Learning-based methods became dominant. 
• Testing became rigorous.
• Datasets: Sowerby, Pascal, ImageNet,…



Computational Cognition, Vision, and Learning

Some biases of datasets:
(1). They bias the research community toward vision problems for 
which there are high-profile annotated datasets. 
• Annotation is easy for some vision tasks – object 

detection/classification (“is there a cat in this box?”) – but hard for 
others (e.g., depth estimation).

(2). The image datasets are only partly representative of the complexity 
of natural images. 
• Rare, but important, events may not occur in the datasets – “is there 

a baby in the road”? Or they will occur very infrequently..
(3). It is impossible to follow the principles of experimental design and 
vary the factors in an experiments systematically.
E.g., detecting a chair as we vary factors like: (i) viewpoint, (ii) lighting, 
(iii) material properties.



Computational Cognition, Vision, and Learning

More fundamentally: 
Datasets may never be big enough!
• For complex visual problems, the amount of data needed to train and 

test vision algorithms may become exponentially large as the 
complexity of the problem increases.

• An image can be constructed in a combinatorial number of ways: 
objects, locations, lighting, etc.

• The basic assumptions of Machine Learning will break down. Training 
and test datasets will not be big enough to represent the space of 
images. 

• Virtual visual worlds can construct datasets which are exponentially, 
or infinitely, big.

• But how to train and test algorithms if the datasets are exponentially 
(or infinitely) big? 



Computational Cognition, Vision, and Learning

UnrealCV: Weichao Qiu

Example: UnrealCV can 
construct images which fool 
object detectors, by varying 
viewpoint and material



Computational Cognition, Vision, and Learning

Three Examples:

• (1) Unreal Stereo. Hazard factors – Experimental Design.
• (2) Sample Ahead – Generate Exponential Amounts of data
• (3) Adversarial Attacks beyond Image Space (see poster).



Example 1: UnrealStereo: 
Binocular Stereo Matching

Left

Right

Rectified image pair

Disparity map

Estimate

7



Challenges in Real Life...

Non-Lambertian surfaces Textureless regions

Transparency Disparity Jumps

These well-known factors that create difficulties for stereo 
methods are called hazardous factors [Zendel ’15]
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Our Approach: Virtual Visual Worlds with 
Parametric Control of Hazardous Factors

Currently, specularity, transparency and texturelessness are supported.
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Virtual Scenes with varying hazardous factors.

● 8 levels for each controllable hazardous factor: easy 
to hard.

● Random Various viewpoints
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Evaluation of some representative 
Stereo Algorithms

Method Type

ELAS   [Geiger et al, 2010] Local

CoR  [Chakrabarti et al, 2015] Local + Hierarchical aggregation

SPS-St    [Yamaguchi et al, 2014] Superpixel-level global

MC-CNN-fst  [Zbontar et al, 2015] CNN + pixel-level global

DispNetC  [Mayer et al, 2016] End-to-end deep network
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Hazard Robustness Curves: How Performance 
changes with Different Levels of Hazard

Performance on hazardous regions of different levels in EPE / px (Lower is better)
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Correlation coefficients between ours
and real-world datasets

Consistency check with Real-world Datasets: 
Find a few examples of hazard factors in KITTI.

Middlebury KITTI

Specular High 0.76 0.55

Specular Medium 0.55 0.28

Textureless High 0.87 0.16

Textureless Medium -0.87 0.54

Transparent - 0.75

Overall 0.91 0.61

Annotated Hazardous Regions on 
KITTI 2015 and Middlebury 2014

● Correlation greater than +0.50 is considered to 
be significant positive relationship
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Methods which perform better overall are NOT 
always doing well on hazardous regions!

Specular Textureless Transparent

Correlation 0.25 0.41 0.43

Correlation: overall performance v.s. hazardous region (Level of high)

Overall performance v.s. performance in 
Hazardous Regions.

● Correlation greater than +0.50 is considered to be significant positive relationship

ELAS CoR SPS-St MC-CNN-fst DispNet

Hazard A 4.321 2.124 3.123 4.321 3.214

Overall 1.213 1.433 1.243 2.345 2.511
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Example 2. SampleAhead: 
Exponentially Big Datasets

Virtual Visual Worlds; Can construct exponentially big 
datasets.
A new problem: How to learn efficiently in exponentially big 
datasets?
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RenderForCNN[Su et al., 2017] as an example

Real Data
(Pascal3D+[2])
~10K images

Synthetic Data
(Rendered from ShapeNet[3])

~2.4M images
(controlled camera pose, object 

models, other parameters at 
random)
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Thinking beyond RenderForCNN[1]...

Camera Pose(4):
azimuth
elevation
tilt(in-plane rotation)
distance

Lighting(4):
#light sources
type(point, directive, 
omni)
position
color
...

Texture(1) Material(1) Scene Layout(3):
Background
Foreground
Position(Occlusion)

Suppose we simply sample 103 possibilities of each parameter listed...

Sythesized data: INFINITE image space
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Infinite Datasets raise new problems:
Addressed in “Sample Ahead” (BMVC 2018).

From INFINITE data space, how to sample FINITE amount of 
training data that BEST facilitates training?

For one answer: see Qi Chen, Weichao Qiu, Yi Zhang, Lingxi
Xie, Alan Yuille. BMVC. 2018.
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Example 3:
Interpretable Adversarial Attacks 

beyond the Image Space

For exponential datasets we cannot test all examples. Instead we need to 
generalize the idea of adversarial attacks in order to find the worst 

possible images by attacking in 3D physical space.
Let your worst enemy test your algorithm!
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Motivation

● This is a cap.
● If we move the light source a little bit (10-2), and dim 

the light a little bit, it should still be a cap.
● If we then rotate the object a little bit (10-3), it should 

still be a cap.
● If we then move the object around a little bit (10-3), it 

should still be a cap.
● If we then change its color a little bit (10-2), it should 

still be a cap.
● But the deep network thinks it’s a helmet!



Big Picture: Image Space Attack

● The majority of adversarial attacks concentrate on the image space.
● We argue that the 3D physical meaning of these individual pixel value changes is not easily explained.
● Attacking in physical space allows us to explore the exponential space of images.

2D Image Neural Network Answer



Big Picture: Physical Space Attack

● In our projects, we consider the entire vision pipeline, that starts from 3D objects, goes through 2D 
perception, eventually to high level understanding.

● We are interested in how changes to parameters that define 3D objects may affect the final 
answer.

3D Object
Rendering 2D Image Neural Network Answer



Big Picture: Most Attacks exploit Differentiability

● We know neural networks are differentiable. White-box adversarial attacks use this property to attack 
the 2D image space.

● If rendering is differentiable, we can use the same technique to attack 3D parameters; otherwise, we 
are in a black-box attack scenario.

3D Object
Rendering 2D Image Neural Network Answer



Method 1: Differentiable Approach

● Here we consider three kinds of 3D physical parameters:
○ Surface Normal: encode the normal vector at every pixel position.
○ Illumination: light intensity coming from different angles.
○ Material: bidirectional reflectance distribution functions.

● We use a rendering model where the image is a differentiable function of these three kinds of 3D 
physical parameters::

● Create adversaries by differentiating. Study the effect of the adversaries on the performance of the 
Deep Network algorithms. ShapeNet and CLEVR.



Experiments on ShapeNet
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Limitations of the Differentiable Renderer

● The set of 3D physical parameters considered in this renderer is limited. For 
example, we cannot handle rotation and translation of objects.

● The rendered images may not look very realistic.
● Although the perturbations now have clear physical meanings, they are still 

not the most intuitive or interpretable.



Method 2: Non-differentiable renderer

● We now use a generic renderer: Blender
● We now consider the most straightforward and intuitive 3D physical parameters:

○ Energy and location of light source.
○ Rotation and translation of objects.
○ Global color change of objects.

● But how to deal with the non-differentiability of the renderer?

3D Object
Rendering 2D Image Neural Network Answer



Optimization

● We go back to the definition of gradients, and approximate the gradient by two passes through the 
entire pipeline/black-box:

● Our objective function is 



3D Physical Parameters

● ShapeNet: 14 physical parameters
○ Lighting (5)
○ Rotation (3)
○ Translation (3)
○ Color (3)

● CLEVR: 4 * 3 + 7 * N physical parameters, where N is the number of objects in the 3D scene.
○ 3 lights; each with 4 parameters
○ For every object, scale (1), location (2), rotation (1), color (3)



Experiments on ShapeNet

● We train two networks (AlexNet, ResNet34) to classify ShapeNetCoreV2, which has 55 categories. 102 
images are selected as test set.

● When we black-box attack the image space, AlexNet misclassifies 99/102 after 500 steps, and 
ResNet34 misclassifies 102/102 after 200 steps.

● But if we black-box attack the physical space, AlexNet misclassifies 14/102 after 500 steps, and 
ResNet34 misclassifies 6/102 after 200 steps.
○ Rendering is slow: attacking one image can take 1 hour.

● Although the success rate drops a lot, it is still possible!



Experiments on ShapeNet



“What is the value of this research?”

● What motivated us originally was the fear of  real 
world adversaries.
○ Autonomous driving is now within reach. 
○ What if a stop sign is perceived as stop sign 

at noon, but perceived as no-parking when 
the sun starts to go down? Or when viewed 
from some specific viewpoints?

● And how to find these adversaries in an exponential 
dataset. Impossible to evalaute the algorithm on all 
images.

● Instead, let your worst enemy – or adversary – test 
your algorithm.

But I’m not a 
helmet!
Despite what 
Deep Network 
says. 



Summary: The need for Virtual Worlds

● Datasets Biases. Datasets may never be big enough. The set of 
images is exponentially, or infinitely, big.

● UnrealCV: an open source project for virtual visual words.
● Three Examples:
● (1) Experimental Design: varying the nuisance, or hazard, factors. 

UnrealStereo. IC3DV. 2018.
● (2) Infinite Datasets: How to learn in an infinite dataset? Sample 

Ahead. BMVC. 2018.
● (3) Adversaries beyond Image Space: How to test algorithms in 

infinite datasets? Poster at this workshop.
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UnrealCV:
• UnrealCV website: Weichao Qiu.
• W. Qiu & A. Yuille. Unrealcv: Connecting computer vision to unreal 

engine. ECCV. Workshop. 2016.
• W Qiu, F Zhong, Y Zhang, S Qiao, Z Xiao, TS Kim, Y Wang. Proceedings 

of the 2017 ACM on Multimedia Conference, 1221-1224. 2017.
• S Qiao, W Shen, W Qiu, C Liu, AL Yuille. ScaleNet: Guiding Object 

Proposal Generation in Supermarkets and Beyond. ICCV. 2017.
• Q Chen, W Qiu, Y Zhang, L Xie, A Yuille. SampleAhead: Online 

Classifier-Sampler Communication for Learning from Synthesized 
Data. BMVC. 2018.

• Y Zhang, W Qiu, Q Chen, X Hu, A Yuille. Unrealstereo: A synthetic 
dataset for analyzing stereo vision. International Conference on 3D 
Vision 2018.

• X Zeng, C Liu, W Qiu, L Xie, YW Tai, CK Tang, AL Yuille. Adversarial 
Attacks Beyond the Image Space. This ECCV Workshop. 2018
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