Domain Adaptation & Transfer: All You Need to Use Simulation "for Real"

Boqing Gong

An intelligent robot

Antoip

Paula

84.0

Semantic segmentation of urban scenes

Assign each pixel a semantic label An appealing application: **self-driving**

Image credit: https://www.cityscapes-dataset.com/

Triumphal approach: CNNs convolutional neural networks

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*.

To teach/train CNNs to segment images and videos

About 1.5 hrs to label one such image!

Cityscapes:

30k images captured from 50 cities Only 5k are well labeled thus far

Image credit: https://www.cityscapes-dataset.com/

Labeling-free training data by simulation

Simulation to real world: catastrophic performance drop

Simulation \rightarrow Simulation Simulation \rightarrow Cityscapes

Cause: standard assumption in machine learning Same underlying distribution for training and testing

Consequence:

Poor cross-domain generalization

Brittle systems in dynamic and changing environment

Synthetic imagery \rightarrow Real photos

[Zhang et al., ICCV'I7]

Adapting face detector to a user's album

[Jamal et al., CVPR'18]

Middle-level concepts describing objects, faces, etc. Shared by different categories

Attribute detection

[Gan et al., CVPR'17]

(a) Input: Video & Query (b) Algorithm: Sequential & Hierarchical Determinantal Point Process (SH-DPP) (c) Output: Summary

Personalization of video summarizers

[Sharghi et al., ECCV'16, CVPR'17, ECCV'18]

Webly supervised learning [Ding et al., WACV'18]

[Gan et al., ECCV'16, CVPR'18]

Abstract form: unsupervised domain adaptation (DA)

Setup

Source domain (with labeled data)

$$D_{\mathcal{S}} = \{(x_m, y_m)\}_{m=1}^{\mathsf{M}} \sim P_{\mathcal{S}}(X, Y)$$

Target domain (no labels for training)
$$D_{\mathcal{T}} = \{(x_n, \mathbf{?})\}_{n=1}^{\mathsf{N}} \sim P_{\mathcal{T}}(X, Y)$$

Objective

Different distributions

Learn models to work well on target

Existing methods

Correcting **sampling** bias

Image

Baseline

Ours

Groundtruth

Let teacher model hint segmentation net (student)

Input: An urban scene image Algorithm: Logistic regression Output: Label distributions

Let 2nd teacher model hint segmentation net (student)

Input: An urban scene image Algorithm: Super-pixel + Logistic regression Output: Labels of some super-pixels

0%

trian Sign

[ICCV'I7]

Curriculum domain adaptation

Cityscapes: Train/val/test: 2993/503/1531

GTA: 24,996 images from the video game

SYNTHIA: 9,400 images

Simulation to real world: catastrophic performance drop

Simulation \rightarrow Sim Sim \rightarrow Cityscapes Adaptation

[Zhang et al., ICCV'I7]

Recent progress

Ours Ours, 2018 FCAN Semi-DA Real2Real

Domain adaptation: key to use simulation "for real"

Simulation to reality for segmentation, detection, Dynamics planning & control, etc.

Domain adaptation: key to use simulation "for real"

Domain-invariant features Importance sampling of data Adapt background models etc.

Curriculum domain adaptation Style transfer, etc.

Correcting sampling bias

Simulation to reality for segmentation, detection, Dynamics planning & control, etc.

Domain adaptation → domain generalization

Simulation for domain generalization

What to simulate?

What to simulate? Active Simulation

[Proof-of-concept paper submitted]

Thank you!

Visual Learning and Embodied Agents in Simulation Environments ECCV 2018 Workshop, Munich, Germany

Sunday, 9th September, 08:45 AM to 05:30 PM, Room: N1095ZG at TU München

