Grounding Natural Language Instructions to Robot Behavior: A Goal-Directed View

Lawson L.S. Wong

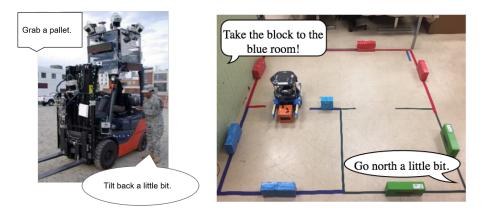
Humans to Robots Laboratory (H2R) Department of Computer Science, Brown University

Now at College of Computer and Information Science (CCIS), Northeastern University

September 9, 2018

< □ > < @ > < 注 > < 注 > ... 注

Grounding natural language instructions



イロト 不得 トイヨト イヨト 二日

	Typical (embodied vision)	We assume (robotics)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

	Typical (embodied vision)	We assume (robotics)
Knowledge of environment	Unseen	Known (propositional)

Lawson L.S. Wong (Northeastern CCIS)

(日) (四) (王) (王) (王)

	Typical (embodied vision)	We assume (robotics)
Knowledge of environment	Unseen	Known (propositional)
Knowledge of tasks/rewards	Discovered / imitated	Known family (goal-directed)

Lawson L.S. Wong (Northeastern CCIS)

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン

	Typical (embodied vision)	We assume (robotics)
Knowledge of environment	Unseen	Known (propositional)
Knowledge of	Discovered /	Known family
tasks/rewards	imitated	(goal-directed)
Nature of	Often rich,	Sparse,
feedback	short-horizon	long-horizon

Lawson L.S. Wong (Northeastern CCIS)

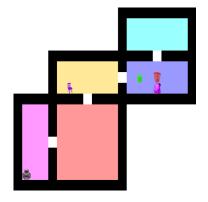
- B

・ロン ・四 ・ ・ ヨン ・ ヨン

	Typical (embodied vision)	We assume (robotics)
Knowledge of environment	Unseen	Known (propositional)
Knowledge of tasks/rewards	Discovered / imitated	Known family (goal-directed)
Nature of feedback	Often rich, short-horizon	Sparse, long-horizon
Complexity	Learning the rich sensor \rightarrow action mapping	Classification, planning

RSS 2017, ACL WS 2017, RSS 2018, Autonomous Robots 2018

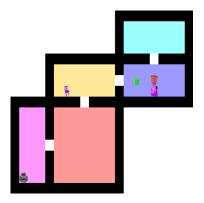
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 4 / 36



For us, the role of simulators:

- Generating behavior for eliciting language data
- Model-based planning

Outline

- Paradigm
- Data
- Models

Lawson L.S. Wong (Northeastern CCIS)

3

<ロ> (日) (日) (日) (日) (日)

3

<ロ> (日) (日) (日) (日) (日)

skill_BlockToBlueRoom

Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

3

- 4 同 6 4 日 6 4 日 6

- skill_BlockToBlueRoom
- > objInRoom(block, blue)

3

- 4 目 ト - 4 日 ト - 4 日 ト

- skill_BlockToBlueRoom
- > objInRoom(block, blue)

Image: A Image: A

- skill_BlockToBlueRoom
- > objInRoom(block, blue)

"Zabierz blok do niebieskiego pokoju"

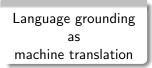
- skill_BlockToBlueRoom
- > objInRoom(block, blue)

Language grounding as machine translation

"Zabierz blok do niebieskiego pokoju"

E 5 4 E

- skill_BlockToBlueRoom
- objInRoom(block, blue)



"Zabierz blok do niebieskiego pokoju"

+ speech recognition, perception, world model, planning, control, \ldots \Rightarrow Robot behavior

A D A D A D A

Outline

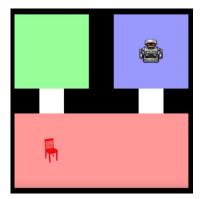
- Paradigm
- Data
- Models

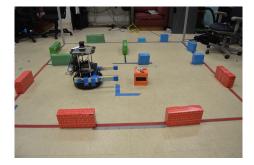
Lawson L.S. Wong (Northeastern CCIS)

3

<ロ> (日) (日) (日) (日) (日)

Simulation Domain





Cleanup World [MacGlashan et al. 2015]

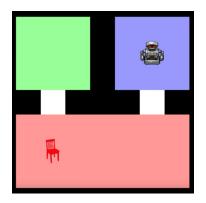
Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 8 / 36

3

Data collection with Amazon Mechanical Turk



 Example Command
 Goal

 Go to the green room.
 agentInRoom(agent0, r) \land roomIsGreen(r)

 Bring the chair to the blue room.
 objInRoom(chair0, r) \land roomIsBlue(r)

(日) (同) (三) (三)

Outline

- Paradigm
- Data
- Models

Lawson L.S. Wong (Northeastern CCIS)

3

<ロ> (日) (日) (日) (日) (日)

Language grounding as machine translation

Source: Natural language (English)

Papers Target language / representation

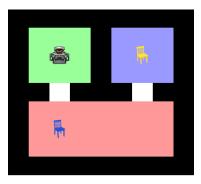
▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Language grounding as machine translation

Source: Natural language (English)

Papers	Target language / representation
[MacMahon et al.], [Chen & Mooney] [Tellex et al.], [Matuszek et al.]	Action space
[Artzi & Zettlemoyer],	

Lawson L.S. Wong (Northeastern CCIS)



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3



"Go to the red room" \mapsto down; down; down

Lawson L.S. Wong (Northeastern CCIS)

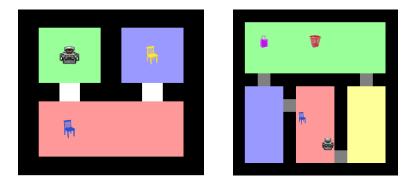
Language Grounding for Robots

September 9, 2018

< 4 → <

3

13 / 36



"Go to the red room" \mapsto down; down; down

Lawson L.S. Wong (Northeastern CCIS)

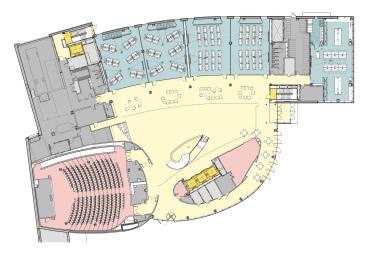
Language Grounding for Robots

4 E September 9, 2018

< 4 → <

3

13 / 36



Lawson L.S. Wong (Northeastern CCIS)

 > < ∃ > < ∃ > ∃
 ⊃ < ○</th>

 September 9, 2018
 13 / 36

< 47 ▶

Robots need the right semantic representation of tasks to interact with humans effectively.

◆□▶ ◆舂▶ ★注≯ ★注≯ 注目

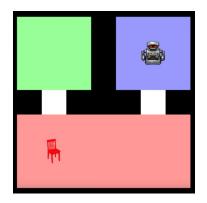
Language grounding as machine translation

Source: Natural language (English)

Target language / representation	
Action space	
Action space	
Propositional, goal-based MDP reward function	

Lawson L.S. Wong (Northeastern CCIS)

Language grounding as machine translation



 Example Command
 Goal

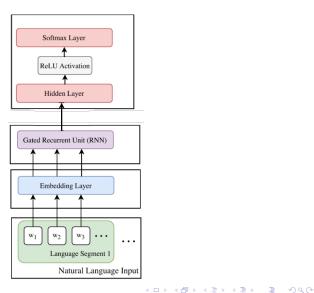
 Go to the green room.
 agentInRoom(agent0, r) \land roomIsGreen(r)

 Bring the chair to the blue room.
 objInRoom(chair0, r) \land roomIsBlue(r)

16 / 36

(人間) トイヨト イヨト

Sequence classification architecture



Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 17 / 36

Results

Grounding accuracy (\approx 3000 sentences, \approx 30 grounded tasks):

Model	Level Selection	Reward Function
IBM2	79.87%	27.26%
[MacGlashan et al.]	19.01/0	21.20/0
Single-RNN	95 . 91 %	80 .46%

RSS 2017

Lawson L.S. Wong (Northeastern CCIS)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Results

Grounding accuracy (\approx 3000 sentences, \approx 30 grounded tasks):

Model	Level Selection	Reward Function
IBM2	79.87%	27.26%
[MacGlashan et al.]	19.0170	21.2070
Single-RNN	95 . 91 %	80.46%

Planning:

2-20x planning speedup

when grounding to appropriate hierarchy level in Abstract Markov Decision Process [ICAPS 2017]

RSS 2017

Results

Grounding accuracy (\approx 3000 sentences, \approx 30 grounded tasks):

Model	Level Selection	Reward Function
IBM2	79.87%	27.26%
[MacGlashan et al.]	19.0170	21.2070
Single-RNN	95 . 91 %	80.46%

Planning:

- 2-20x planning speedup when grounding to appropriate hierarchy level in Abstract Markov Decision Process [ICAPS 2017]
- Takes < 1s on 90% of tasks vs. baseline takes > 20s on 50% of tasks

RSS 2017

Language grounding as machine translation

Source: Natural language (English)

Papers	Target language / representation
[MacMahon et al.], [Chen & Mooney]	
[Tellex et al.], [Matuszek et al.]	Action space
[Artzi & Zettlemoyer],	
[MacGlashan et al.], [Arumugam et al.]	Propositional, goal-based
	MDP reward function
[Dzifcak et al.], [Karamcheti et al.]	Actions and goals

Lawson L.S. Wong (Northeastern CCIS)

Predicate goals

Previously: agentInRoom(agent0, red)

イロト イポト イヨト イヨト

- 2

Predicate goals

Previously: agentInRoom(agent0, red)

Action-Oriented	Goal-Oriented
goUp(steps)	agentInRoom(agent, room_attr)
goDown(steps)	objInRoom(object, room_attr)
goLeft(steps)	
<pre>goRight(steps)</pre>	

- 2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Predicate goals

Previously: agentInRoom(agent0, red)

Action-Oriented	Goal-Oriented
goUp(steps)	agentInRoom(agent, room_attr)
goDown(steps)	objInRoom(object, room_attr)
goLeft(steps)	
<pre>goRight(steps)</pre>	

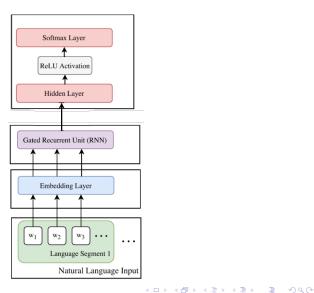
Natural Language	Callable Unit	Arguments
Go to the red room.	agentInRoom	agent0, red
Put the block in	objInRoom	chair0, green
the green room.		
Go up three spaces.	goUp	3

- 2

20 / 36

イロン イヨン イヨン イヨン

Recall: Sequence classification architecture

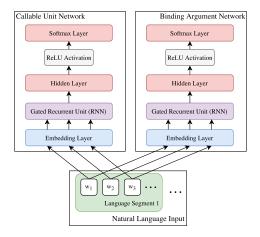


Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

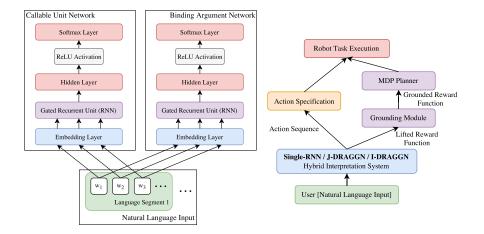
September 9, 2018 21 / 36

Factored output space



Lawson L.S. Wong (Northeastern CCIS)

Factored output space



Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018

22 / 36

イロト 不得 トイヨト イヨト 二日

Language grounding as machine translation

Source: Natural language (English)

Papers	Papers Target language / representation	
[MacMahon et al.], [Chen & Mooney]		
[Tellex et al.], [Matuszek et al.]	Action space	
[Artzi & Zettlemoyer],		
[MacGlashan et al.], [Arumugam et al.]	Propositional, goal-based	
	MDP reward function	
[Dzifcak et al.], [Karamcheti et al.]	Actions and goals	
[Dzifcak et al.], [Artzi & Zettlemoyer]	Semantic parse (CCG)	
[Gopalan et al.]		
[Raman & Kress-Gazit], [Gopalan et al.]	Linear temporal logic	

Lawson L.S. Wong (Northeastern CCIS)

Formal language: Linear temporal logic

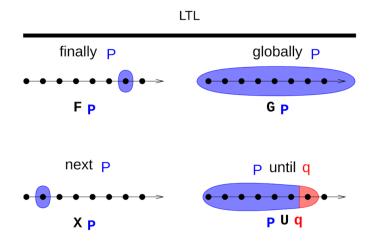


Figure by M. Pistore and M. Roveri, Symbolic Model Checking

Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 24 / 36

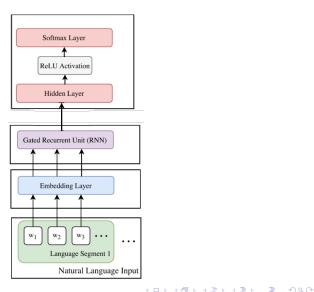
Grounding to linear temporal logic (LTL)

Example Command	Geometric LTL Expression
Go to the green room.	F Gr
Go into the red room.	FR
Enter blue room via green room.	$F(Gr \wedge FB)$
Go through the yellow or red room,	
and enter the blue room	$F((R \lor Y) \land FB)$
Go to the blue room but avoid the red room.	$\mathbf{F}B\wedge\mathbf{G} eg R$
While avoiding yellow navigate to green.	$\mathbf{F}Gr\wedge \mathbf{G} arrow Y$
Scan for blocks and insert any found into bin. Look for and pick up any non red cubes and put them in crate.	${f G}((S{f U} eg A)\wedge{f F}A)\ {f G}((S{f U} eg R)\wedge{f F}R)$

イロン 不聞と 不同と 不同と

- 31

Recall: Sequence classification architecture

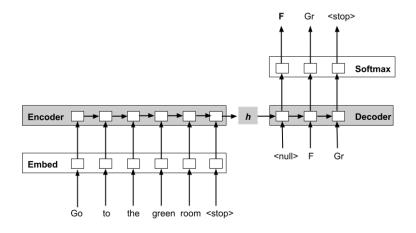


Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 26 / 36

Sequence-to-sequence translation architecture



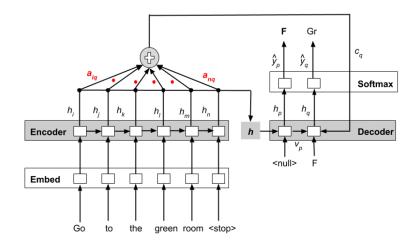
[Sutskever et al. 2014, Cho et al. 2014] Figure adapted from S. Merity's webpage

Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 27 / 36

Sequence-to-sequence with attention



[Sutskever et al. 2014, Cho et al. 2014, Bahdanau et al. 2014] Figure adapted from S. Merity's webpage

Lawson L.S. Wong (Northeastern CCIS)

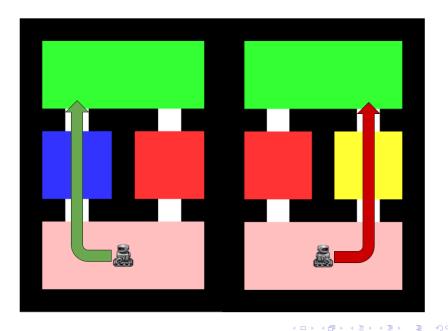
Language Grounding for Robots

September 9, 2018

- ∢ ≣ →

3

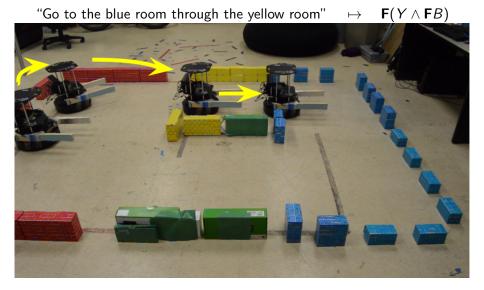
28 / 36



Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 29 / 36



RSS 2018: 93% accuracy on trained tasks, 60% accuracy on novel tasks (\approx 4000 sentences, \approx 40 grounded tasks)

◆□▶ ◆舂▶ ◆理▶ ◆理

Language grounding as machine translation

Source: Natural language (English)

Papers	Papers Target language / representation	
[MacMahon et al.], [Chen & Mooney]		
[Tellex et al.], [Matuszek et al.]	Action space	
[Artzi & Zettlemoyer],		
[MacGlashan et al.], [Arumugam et al.]	Propositional, goal-based	
	MDP reward function	
[Dzifcak et al.], [Karamcheti et al.]	Actions and goals	
[Dzifcak et al.], [Artzi & Zettlemoyer]	Semantic parse (CCG)	
[Gopalan et al.]		
[Raman & Kress-Gazit], [Gopalan et al.]	Linear temporal logic	

...?

31 / 36

References

 Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities. Dilip Arumugam*, Siddharth Karamcheti*, Nakul Gopalan, Lawson L.S. Wong, Stefanie Tellex.

Robotics: Science and Systems (RSS), 2017.

 A tale of two DRAGGNs: A hybrid approach for interpreting action-oriented and goal-oriented instructions.
 Siddharth Karamcheti, Edward C. Williams, Dilip Arumugam, Mina Rhee, Nakul Gopalan, Lawson L.S. Wong, Stefanie Tellex.
 Annual Meeting of the Association for Computational Linguistics (ACL) Workshop on Language Grounding for Robotics, 2017.

 Sequence-to-Sequence Language Grounding of Non-Markovian Task Specifications. Nakul Gopalan*, Dilip Arumugam*, Lawson L.S. Wong, Stefanie Tellex. Robotics: Science and Systems (RSS), 2018.

 Grounding Natural Language Instructions to Semantic Goal Representations for Abstraction and Generalization.
 Dilip Arumugam*, Siddharth Karamcheti*, Nakul Gopalan, Edward C. Williams, Mina Rhee, Lawson L.S. Wong, Stefanie Tellex.
 Autonomous Robots, 2018 (in press).

* denotes equal contribution

Acknowledgments

Nakul Gopalan

Dilip Arumugam

Siddharth Karamcheti

Stefanie Tellex

Michael L. Littman James MacGlashan

Mina Rhee Edward Clem Williams NSF NASA DARPA

< 67 ▶

September 9, 2018

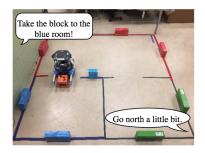
- A - E - N

33 / 36

Conclusion

Language grounding

- Paradigm
- Data
- Representations and Models
 - Propositional goals Sequence classification
 - Predicate goals Factored output space
 - Linear temporal logic Sequence-to-sequence translation



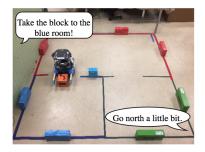
"People want to talk to the robot about everything the robot can see, and everything the robot can do."

- Stefanie Tellex

Conclusion

Language grounding

- Paradigm
- Data
- Representations and Models
 - Propositional goals Sequence classification
 - Predicate goals Factored output space
 - Linear temporal logic Sequence-to-sequence translation



More sophisticated simulation \Rightarrow Greater robustness to diversity in language?

Lawson L.S. Wong (Northeastern CCIS)

Language Grounding for Robots

September 9, 2018 36 / 36