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Spectrum of language grounding approaches

Typical We assume
(embodied vision) (robotics)

Knowledge of Unseen Known
environment (propositional)

Knowledge of Discovered / Known family
tasks/rewards imitated (goal-directed)

Nature of Often rich, Sparse,
feedback short-horizon long-horizon

Complexity Learning the rich Classification,
sensor → action mapping planning
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“Take the block to the blue room”

RSS 2017, ACL WS 2017, RSS 2018, Autonomous Robots 2018





For us, the role of simulators:

I Generating behavior for eliciting language data

I Model-based planning
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Outline

I Paradigm

I Data

I Models
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Paradigm

“Take the block to the blue room”

I skill BlockToBlueRoom

I objInRoom(block, blue)

I

I “Zabierz blok do niebieskiego pokoju”

.

Language grounding
as

machine translation

+ speech recognition, perception, world model, planning, control, . . .
⇒ Robot behavior
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Outline

I Paradigm
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Simulation Domain

Cleanup World
[MacGlashan et al. 2015]
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Data collection with Amazon Mechanical Turk

Example Command Goal
Go to the green room.
Bring the chair to the blue room.

agentInRoom(agent0, r) ∧ roomIsGreen(r)

objInRoom(chair0, r) ∧ roomIsBlue(r)

Lawson L.S. Wong (Northeastern CCIS) Language Grounding for Robots September 9, 2018 9 / 36
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Language grounding as machine translation

Source: Natural language (English)

Papers Target language / representation

[MacMahon et al.], [Chen & Mooney]

[Tellex et al.], [Matuszek et al.]

[Artzi & Zettlemoyer], . . .
Action space

[MacGlashan et al.], [Arumugam et al.]
Propositional, goal-based

MDP reward function

[Dzifcak et al.], [Karamcheti et al.] Actions and goals

[Artzi & Zettlemoyer] Semantic parse (CCG)

[Raman & Kress-Gazit] Linear temporal logic

. . . ?
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Do we really want to specify actions?

“Go to the red room” 7→ down; down; down
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.

Robots need the right
semantic representation of tasks
to interact with humans effectively.
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Language grounding as machine translation

Example Command Goal
Go to the green room.
Bring the chair to the blue room.

agentInRoom(agent0, r) ∧ roomIsGreen(r)

objInRoom(chair0, r) ∧ roomIsBlue(r)
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Sequence classification architecture
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Results

Grounding accuracy (≈ 3000 sentences, ≈ 30 grounded tasks):

Model Level Selection Reward Function

IBM2
[MacGlashan et al.]

79.87% 27.26%

Single-RNN 95.91% 80.46%

Planning:

I 2-20x planning speedup
when grounding to appropriate hierarchy level
in Abstract Markov Decision Process [ICAPS 2017]

I Takes < 1s on 90% of tasks
vs. baseline takes > 20s on 50% of tasks

RSS 2017
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Predicate goals

Previously: agentInRoom(agent0, red)

Action-Oriented Goal-Oriented

goUp(steps) agentInRoom(agent, room attr)

goDown(steps) objInRoom(object, room attr)

goLeft(steps)

goRight(steps)

Natural Language Callable Unit Arguments

Go to the red room. agentInRoom agent0, red

Put the block in objInRoom chair0, green

the green room.
Go up three spaces. goUp 3
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Recall: Sequence classification architecture

Lawson L.S. Wong (Northeastern CCIS) Language Grounding for Robots September 9, 2018 21 / 36



Factored output space
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Language grounding as machine translation
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Formal language: Linear temporal logic

Figure by M. Pistore and M. Roveri, Symbolic Model Checking
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Grounding to linear temporal logic (LTL)

Example Command Geometric LTL Expression

Go to the green room.
Go into the red room.

FGr
FR

Enter blue room via green room.
Go through the yellow or red room,

and enter the blue room

F(Gr ∧ FB)

F((R ∨ Y ) ∧ FB)

Go to the blue room but avoid the red room.
While avoiding yellow navigate to green.

FB ∧ G¬R
FGr ∧ G¬Y

Scan for blocks and insert any found into bin.
Look for and pick up any non red cubes and

put them in crate.

G((SU¬A) ∧ FA)
G((SU¬R) ∧ FR)
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Recall: Sequence classification architecture
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Sequence-to-sequence translation architecture

[Sutskever et al. 2014, Cho et al. 2014]
Figure adapted from S. Merity’s webpage
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Sequence-to-sequence with attention

[Sutskever et al. 2014, Cho et al. 2014, Bahdanau et al. 2014]
Figure adapted from S. Merity’s webpage
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“Go to the blue room through the yellow room” 7→ F(Y ∧ FB)

RSS 2018: 93% accuracy on trained tasks, 60% accuracy on novel tasks
(≈ 4000 sentences, ≈ 40 grounded tasks)



Language grounding as machine translation
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Conclusion

Language grounding

I Paradigm

I Data

I Representations and Models

• Propositional goals –
Sequence classification

• Predicate goals –
Factored output space

• Linear temporal logic –
Sequence-to-sequence translation

More sophisticated simulation ⇒ Greater
robustness to diversity in language?
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“People want to talk to the robot

about everything the robot can see,

and everything the robot can do.”

– Stefanie Tellex
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