
Fei Xia*
1, Amir R. Zamir*

1,2, Zhiyang He*
1, Alexander Sax1, Jitendra Malik2, Silvio Savarese1

Gibson Env: Real-World Perception for Embodied Agents

http://gibsonenv.stanford.edu

(* Equal Contribution)

Download Gibson dataset: http://gibsonenv.stanford.edu
Browser dataset online:
http://gibsonenv.stanford.edu/database/

Source code https://github.com/StanfordVL/GibsonEnv

Introduction

Gibson Environment

Rendering Engine

Experimental Results

1. Database: real-world RGBD panoramas 2. Physics engine: PyBullet

3. View synthesis: Neural Network filler and 
Goggle mechanism (Method Section)

4. ROS integration & Gym integration

(b) (c)(a)

Dataset comparison

UDACITY AIRSIM MALMO TORCS

CARLATHOR SYNTHIA VIZDOOM

Figure 5: Sample spaces in Gibson database. The spaces are diverse in terms of size, visuals, and function, e.g. businesses, construction sites, houses.
Upper: Sample 3D models. Lower: Sample images from Gibson database (left) and some of other environments [29, 46, 67, 79, 48, 94, 35, 100] (right).

data, but test them on (real image, ground truth). If Gib-
son renderings are close enough to real images and Goggles
mechanism is effective, test results on real images are ex-
pected to be satisfactory. This also enables quantifying the
impact of Goggles, i.e. using u(It) vs. Is, f(Is), and It.

Depth Estimation: Predicting depth given a single RGB
image, similar to [31]. We train 4 networks to predict the
depth given one of the following 4 as input images: Is (pre-
neural network rendering),f(Is) (post-neural network ren-
dering), u(It) (real image seen with Goggles), and It (real
image). We compare the performance of these in Sec. 5.3.

Scene Classification: The same as previous task, but the
output is scene classes rather than depth. As our images do
not have scene class annotations, we generate them using a
well performing network trained on Places dataset [98].

5. Experimental Results
5.1. Benchmarking Space Databases

The spaces in Gibson database are collected using var-
ious scanning devices, including NavVis, Matterport, or
DotProduct, covering a diverse set of spaces, e.g. offices,
garages, stadiums, grocery stores, gyms, hospitals, houses.
All spaces are fully reconstructed in 3D and post processed
to fill the holes and enhance the mesh. We benchmark
some of the existing synthetic and real databases of spaces
(SUNCG [84] and Matterport3D [16]) vs Gibson’s using the
following metrics in Table 1:

Specific Surface Area (SSA): the ratio of inner mesh
surface and volume of convex hull of the mesh. This is a
measure of clutter in the models.

Navigation Complexity: Longest A

⇤ navigation dis-
tance between randomly placed two points divided by the
straight line distance. We compute the highest navigation
complexity maxsi,sj

dA⇤ (si,sj)
dl2(si,sj)

for every model.

Dataset Gibson SUNCG Matterport3D
Number of Spaces 572 45622 90
Total Coverage m2 211k 5.8M 46.6K
SSA 1.38 0.74 0.92
Nav. Complexity 5.98 2.29 7.80
Real-World Transfer Err 0.92§ 2.89† 2.11†

Table 1: Benchmarking Space Databases: Comparison of Gibson
database with SUNCG [84] (hand designed synthetic), and Matter-
port3D [16]. § Rendered with Gibson, † rendered with MINOS [72].

Real-World Transfer Error: We train a neural network
for depth estimation using the images of each database and
test them on real images of 2D-3D-S dataset [9]. Train-
ing images of SUNCG and Matterport3D are rendered us-
ing MINOS [72] and our dataset is rendered using Gibson’s
engine. The training set of each database is 20k random
RGB-depth image pairs with 90

� field of view. The reported
value is average depth estimation error in meters.

Scene Diversity: We perform scene classification on
10k randomly picked images for each database using a net-
work pretrained on [98]. We report the entropy of the dis-
tribution of top-1 classes for each environment. Gibson,
SUNCG [84], and THOR [100] gain the scores of 3.72,
2.89, and 3.32, respectively (highest possible entropy =
5.90).

5.2. Evaluation of View Synthesis

To train the networks f and u of our neural network
based synthesis framework, we sampled 4.3k 1024 ⇥ 2048

Is—It panorama pairs and randomly cropped them to
256⇥ 256. We use Adam [51] optimizer with learning rate
2⇥ 10

�4. We first train f for 50 epochs until convergence,
then we train f and u jointly for another 50 epochs with
learning rate 2⇥ 10

�5. The learning finishes in 3 days on 2
Nvidia Titan X GPUs.

View Synthesis 
Qualitative Results

Transferring to Real World Results

G
eo

m
et

ri
c 

R
en

d
er

in
g

P
o

st
 N

eu
ra

l 
N

et
 R

en
d

er
in

g
R

ea
l 

Im
ag

e 
v

ia
 G
o
g
g
le
s

R
ea

l 
Im

ag
e

Figure 6: Qualitative results of view synthesis and Goggles. Top to bottom rows show images before neural network correction, after neural network
correction, target image seen through Goggles, and target image (i.e. ground truth real image). The first column shows a pano and the rest are sample
zoomed-in patches. Note the high similarity between 2nd and 3rd row, signifying the effectiveness of Goggles.

Resolution 128x128 256x256 512x512
Non-Visual Sensor 427.9 427.9 427.9
Depth Only 159.4 113.3 79.2
RGBD Pre Network f 81.5 50.9 33.3
RGBD Post Network f 73.6 42.7 18.3
Semantic Only 93.1 79.5 50.9
Surface Normal 89.3 73.7 45.4

Table 2: Rendering speed (FPS) of Gibson for different resolutions and
configurations. Tested on a single NVIDIA GeForce GTX1070 card.

Sample renderings and their corresponding real image
(ground truth) are shown in Fig. 6. Note that pre-neural
network renderings suffer from geometric artifacts which
are partially resolved in post-neural network results. Also,
though the contrast of the post-neural network images is
lower than real ones and color distributions are still differ-
ent, Goggles could effectively alter the real images to match
the renderings (compare 2

nd and 3

rd rows). In additional,
the network f and Goggles u jointly addressed some of the
pathological domain gaps. For instance, as lighting fixtures
are often thin and shiny, they are not well reconstructed in
our meshes and usually fail to render properly. Network f

and Goggles learned to just suppress them altogether from
images to not let a domain gap remain. The scene out the
windows also often have large re-projection errors, so they
are usually turned white by f and u.

Appearance columns in Table 3 quantify view synthe-
sis results in terms image similarity metrics L1 and SSIM.
They echo that the smallest gap is between f(Is) and u(It).

Rendering Speed of Gibson is provided in Table 2.

5.3. Transferring to Real-World

We quantify the effectiveness of Goggles mechanism in
reducing the domain gap between Gibson renderings and
real imagery in two ways: via the static-recognition tasks
described in Sec. 4.1 and by comparing image distributions.

Evaluation of transferring to real images via scene clas-
sification and depth estimation are summarized in Table. 3.

Train Test Static Tasks Appearance
Scene
Class Acc.

Depth Est.
Error

SSIM L1

Is It 0.280 1.026 0.627 0.096
f(Is) It 0.266 1.560 0.480 0.10
f(Is) u(It) 0.291 0.915 0.816 0.051

Table 3: Evaluation of view synthesis and transferring to real-world.
Static Tasks column shows on both scene classification task and depth es-
timation tasks, it is easiest to transfer from f(Is) to u(It) compared with
other cross-domain transfers. Appearance columns compare L1 and SSIM
distance metrics for different pairs showing the combination of network f
and Goggles u achieves best results.

Also, Fig. 7 (a) provides depth estimation results for all fea-
sible train-test combinations for reference. The diagonal
values of the 4 ⇥ 4 matrix represent training and testing on
the same domain. The gold standard is train and test on
It (real images) which yields the error of 0.86. The clos-
est combination to that in the entire table is train on f(Is)

(f output) and test on u(It) (real image through Goggles)
giving 0.91, which signifies the effectiveness of Goggles.

In terms of distributional quantification, we used two
metrics of Maximum Mean Discrepancy (MMD) [37] and
CORAL [86] to test how well f(Is) and u(It) domains are
aligned. The metrics essentially determine how likely it is
for two samples to be drawn from different distributions.
We calculate MMD and CORAL values using the features
of the last convolutional layer of VGG16 [82] and kernel
k(x, y) = x

T
y. Results are summarized in Fig. 7 (b) and

(c). For each metric, f(Is) - u(It) is smaller than other
pairs, showing that the two domains are well matching.

In order to quantitatively show the networks f and u do
not give degenerate solutions (i.e. collapsing all images
to few points to close the gap by cheating), we use f(Is)
and u(It) as queries to retrieve their nearest neighbor using
VGG16 features from Is and It, respectively. Top-1, 2 and
5 accuracies for f(Is) 7! Is are 91.6%, 93.5%, 95.6%.
Top-1, 2 and 5 accuracies for u(It) 7! It are 85.9%,
87.2%,89.6%. This indicates a good correspondence be-

(b) (c)(a) Domain 1Domain 1

D
o

m
a

in
 2

D
o

m
a

in
 2

Figure 7: Evaluation of transferring to real-world from Gibson. (a)
Error of depth estimation for all train-test combinations. (b,c) MMD and
CORAL distributional distances. All tests are in support of Goggles.

Figure 8: Visual Local planning and obstacle avoidance. Reward curves
for perceptual vs non-perceptual husky agents and a sample trajectory.

tween pre and post neural network images is preserved, and
thus, no collapse is observed.

5.4. Validation Tasks Learned in Gibson

The results of the active perceptual tasks discussed in
Sec. 4.1 are provided here. In each experiment, the non-
visual sensor outputs include agent position, orientation,
and relative position to target. The agents are rewarded by
the decrease in their distance towards their targets. In Lo-
cal Planning and Visual Obstacle Avoidance, they receive
an additional penalty for every collision.

Local Planning and Visual Obstacle Avoidance Re-
sults: We trained a perceptual and non-perceptual husky
agent according to the setting in Sec. 4.1 with PPO [74]
for 150 episodes (300 iterations, 150k frames). Both
agents have a four-dimensional discrete action space: for-
ward/backward/left/right. The average reward over 10 it-
erations are plotted in Fig 8. The agent with perception
achieves a higher score and developed obstacle avoidance
behavior to reach the goal faster.

Distant Visual Navigation Results: Fig. 9 shows the
target and sample random initial locations as well as the
reward curves. Global navigation behavior emerges after
1700 episodes (680k frames), and only the agent with visual
state was able to accomplish the task. The action space is
the same as previous experiment.

Also, we use the trained policy of distant navigation to
evaluate the impact of Goggles on an active task: we go to
camera locations where It is available. Then we measure
the policy discrepancy in terms of L2 distance of output ac-
tion logits when different renderings and It are provided
as input. Training on f(Is) and testing on u(It) yields
discrepancy of 0.204 (best), while training on f(Is) and
testing on It gives 0.300 and training on Is and testing on
It gives 0.242. After the initial release of our work, a pa-

Target Location

Initial Location

RGB Sensor

Nonvisual Sensor

Figure 9: Distant Visual Navigation. The initial locations and target are
shown. The agent succeeds only when provided with visual inputs.

per recently reported an evaluation done on a real robot for
adaptation using inverse mapping from real images to ren-
derings [97], with positive results. They did not use paired
data, unlike Gibson, which would be expected to further en-
hance the results.

Stair Climb: As explained in Sec. 4.1, an ant [4] is
trained to perform the complex locomotive task of plausi-
bly climbing down a stairway without flipping. The action
space is eight dimensional continuous torque values. We
train one perceptual and one non-perceptual agent starting
at a fixed initial location, but at test time slightly and ran-
domly move their initial and target location around. They
start to acquire stair-climbing skills after 1700 episodes
(700k time steps). While the perceptual agent learned
slower, it showed better generalizability at test time cop-
ing with the location shifts and outperformed the non-
perceptual agent by 70%. Full details of this experiment
is privded in the supplementary material.

6. Limitations and Conclusion
We presented Gibson Environment for developing real-

world perception for active agents and validated it using a
set of tasks. While we think this is a step forward, there are
some limitations that should be noted. First, though Gibson
provides a good basis for learning complex navigation and
locomotion, it does not include dynamic content (e.g. other
moving objects) and does not allow manipulation at this
point. This can potentially be solved by integrating our
approach with synthetic objects [17, 47]. Second, we do
not have full material properties and no existing physics
simulator is optimal; this may lead to physics related
domain gaps. Finally, we provided quantitative evaluations
of Goggles mechanism for transferring to real world mostly
using static recognition tasks. The ultimate test would be
evaluating Goggles on real robots.

Acknowledgement: We gratefully acknowledge the
support of Facebook, Toyota (1186781-31-UDARO), ONR
MURI (N00014-14-1-0671), ONR (1165419-10-TDAUZ);
Nvidia, CloudMinds, Panasonic (1192707-1-GWMSX).

Visual obstacle avoidance Distant navigation

We propose Gibson Environment for 
developing real world perception for 
active agents.

Limitations (future work):
- Dynamic contents
- Manipulation

- Learning in real world: slow, fragile
- Learning in simulation: generalization
difficulties: (1) photorealism (2) semantic
distribution mismatch

(a) (b) (c) (d)

PR

PR

PR

PR

+ S f

RendererPoint Cloud PR View Selection and InterpolationS Neural Net Fillerf

Density mapDensity Map

Figure 1: Additional view synthesis results. We provide additional view synthesis and domain adaptation results. The format is similar to Fig. 6 in the
main paper. The results have high resolution and are very rich in details, so we encourage readers to zoom in to see details.

2. Details about Semantic Modality

Some models in our system are semantically annotated.
For those models, we are able to output a semantic seg-
mented frame. Examples are shown in Fig. 2. We provide
semantic labels for 13 classes, including floor, ceiling, wall,
beam, window, column, door, table, chair, bookcase, sofa,
board, and clutter.

3. Additional Experiments

3.1. Additional View Synthesis Results

We provide additional view synthesis results to provide a
more thorough understanding of the qualitative results. The
results are shown in Fig. 1.

Our rendering engine has 3 stages:
1. (a)->(b) Point cloud rendering: reproject points to new view
2. (b)->(c) View selection: adaptively select view to retrieve
points from; Interpolation: interpolate rendered points to image
3. (c)->(d) Neural network: fill holes and fix geometry issues

Training techniques:
- Color matching loss 
- Stochastic identity initialization 
- Perceptual loss for D(I1, I2)

we propose

: point cloud rendering : real images

: NN rendering : real images through goggle

Conclusions and Limitations

Example tasks in Gibson

Goggle Mechanism

Point Cloud
Rendering

Image
f u

f: input point cloud
output rendering

u: input real images
output rendering 

From datasets to environments

1 2

Close domain gap

filler

goggles


