

- distribution mismatch

Gibson Environment

1. Database: real-world RGBD panoramas 2. Physics engine: PyBullet

- 3. View synthesis: Neural Network filler and Goggle mechanism (Method Section)

Experimental Results Dataset comparison

Dataset Number of Space Total Coverage SSA Nav. Complexit Real-World Tra

. ROS integration & Gym integration

View Synthesis **Qualitative Results**

	Gibson	SUNCG	Matterport3D
ces	572	45622	90
m^2	211k	5.8M	46.6K
	1.38	0.74	0.92
ty	5.98	2.29	7.80
unsfer Err	0.92^{\S}	2.89^{\dagger}	2.11^{\dagger}

Transferring to Real World Results

Example tasks in Gibson

Conclusions and Limitations

We propose Gibson Environment for developing real world perception for active agents.

Limitations (future work): Dynamic contents

Manipulation

ce code <u>https://github.com/StanfordVL/GibsonEnv</u>

Iload Gibson dataset: <u>http://gibsonenv.stanford.edu</u>

/gibsonenv.stanford.edu/database/