
Learning a Semantic Prior for Guided
Navigation

Yi Wu1, Yuxin Wu2, Georgia Gkioxari2, Yuandong Tian2,
Aviv Tamar1, Stuart Russell1

1UC Berkeley 2Facebook AI Research

Abstract. Learning generalizable agents that can adapt to unseen en-
vironments remains an open problem in reinforcement learning. We con-
sider visual navigation and address this problem by utilizing latent se-
mantic regularity in human-designed 3D environments, aiming for gen-
eralization across scenarios that are visually diverse but semantically
consistent. During training, the agent learns subpolicies to reach differ-
ent semantic concepts, such as ‘move towards the kitchen’, and a prior
distribution over their pairwise relationships, such as ‘kitchen is close
to dining room’, in the form of a probabilistic graphical model. When
testing on new scenarios, the agent dynamically updates its belief of the
underlying semantic relationships during exploration and plans its route
accordingly towards the final target in an interpretable manner. Our
guided navigation method outperforms strong baselines which do not
explicitly plan using the semantic content.

Keywords: Reinforcement Learning, Generalization, Navigation, Graph-
ical Model, Semantic Relationships

1 Introduction

Although deep reinforcement learning (DRL) has witnessed several achievements
in recent years [21,16,11], the generalization capability of DRL agents is still an
open problem. In their majority, RL agents are tested on the same training envi-
ronments. In contrast, humans show strong adaptation to unknown environments
(typically after a few trials and explorations).

Finding a well-defined metric that captures the generalization/adaptation
capability of RL agents is not easy. Naively separating environments into a train
and a test set is not optimal, due to their heterogeneous properties (e.g., different
games in Atari have dramatically different or even irrelevant goals). On the
other hand, environments that only slightly differ in appearance (e.g. family of
environments with color/shape/texture perturbations of objects [24]) are usually
quite narrowly scoped and do not cover diverse real-world scenarios. Ideally, we
want a family of environments that appear to be diverse but still share semantic
properties - the types of objects/rooms and the dynamics between them are the
same but their attributes (apperance, color, shape etc.) and the scene layout



2 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

drastically differ across scenes. Such environments allow us to test whether an
agent can learn such properties and generalize well.

To this end, navigation tasks within human-designed 3D environments pro-
vide an effective testbed to measure semantic level generalization. Agents learn
from a variety of observations due to different scene layouts, object types, sizes
and connectivity, which are ultimately tied to the same underlying natural prop-
erties. When agents are faced with the task of achieving semantic goals (e.g., go
to kitchen), their ability to adapt to different scenes is tested. House3D [26] is an
example of such an environment. House3D leverages the SUNCG dataset [22] and
contains 45K human-designed real-world 3D house models, ranging from single
studios to houses with gardens, in which objects are fully labeled with common
room and object categories (e.g., bedroom, sofa, etc). Agents trained in these
environments see the same set of object categories and underlying targets (or
tasks to accomplish).

Different from traditional deep RL agents which learn control solely from the
high-dimensional continuous visual signal, in this work, we assume that some
low-dimensional discrete semantic signals from perception is also available (e.g.,
the output of a object detector or scene classifier). With this assumption, we
propose a guided navigation approach: besides training target driven subpolicies
from visual signals, based on the semantic signals, we learn a Bayesian model
over the semantic structures to provide exploration guidance for the subpolicies.
The learned Bayesian model (1) represents a structured prior over the semantic
properties of the environments, (2) allows efficient inference and planning when
exploring new environments, and (3) is easy to learn and fully interpretable.

Our extensive experiments show that our proposed approach performs strongly:
it is better than model-free holistic policies and even slightly outperforms RNN-
based meta-controllers, which are trained with the same subpolicies and input
signals as our method but have orders of magnitude more parameters and are
less interpretable.

2 Related Work

The problem of navigation has been studied extensively [10]. Classical approaches
build a 3D map of the scene using SLAM, which is subsequently used for plan-
ning [4]. More recently, end-to-end approaches have been applied to tackle vari-
ous domains, such as maze [13], indoor scenes [27] and Google street view [12].

Evidently, navigation performance deteriorates as the agent’s distance from
the target increases [27,26]. To aid navigation and boost performance, auxiliary
tasks[13,7] are often introduced during training. Another direction for visual
navigation is to use a recurrent neural network and represent the memory in
the form of a 2D spatial map [9,18,23,5] such that a differentiable planning
computation [9,23,5] can be performed on the spatial memory to produce better
performances. Our approach considers more general graph structures beyond
2D grids and captures pairwise relationships between semantic entities, which



Learning a Semantic Prior for Guided Navigation 3

we use as an informative latent structure in semantically rich environments like
House3D.

Similar to our work, Savinov et al. [20] constructs a graph of nodes cor-
responding to different locations of the environment. However, they rely on a
pre-exploration step within the test scene. In our work, we learn a semantic
prior based on the observation that semantic concepts and basic structural rules
are shared across real-world scenes. This allows us to directly start solving for
the task at hand without any exploratory steps.

Besides task complexity, deep RL agents can fail to adapt to new unseen sce-
narios. Most deep RL agents are tested in the same training environments [13],
disregarding generalization. While limited, different approaches have been pro-
posed to enforce an agent’s generalization ability. In [24], domain randomization
is used to increase an agent’s robustness. In [17,18], randomly generated mazes
are used to check the generalization capacity of the trained agent. In our work,
we address this issue directly by using a separate test set of environments of
different scene layouts such that an agent can not resort to memorization or
simple pattern matching to solve the task.

Another direction in RL tackles the problem of fast adaptation to novel envi-
ronments via meta-learning [3,2,14]. Methods include learning a good parameter
initialization for gradient descent [3] or learning a neural network that can fast
adapt its policy after exploration in a new environment [2,14]. In contrast, we
propose to learn a Bayesian model over the semantic structure of an environment
and update the posterior structure via Bayes rule. Our approach (1) can work
even without any exploration steps in a new environment and (2) is interpretable
and can be potentially combined with any graph-based planning algorithm from
the classical AI literature.

Our work can be viewed as a special case of hierarchical reinforcement learn-
ing (HRL). Unlike other approaches [25,1], in our work high-level planning is
done based on the semantic signal. With orders of magnitudes fewer parame-
ters, our approach is easier to learn compared to recurrent controllers.

Our approach assumes a discrete semantic signal in addition to the continu-
ous state. Similar assumption is also adopted in [19], where the discrete signals
are used to tackle the sparse reward problem. The schema network [8] further
assumes that even the high dimensional visual signal can be completely rep-
resented in a binary form and therefore directly runs logical reasoning on the
binary states for accurate forward simulation.

3 Background

We consider the task of multi-target navigation. The agent is given one of K dif-
ferent targets (concepts), T = {T1, T2, . . . , TK}, and is asked to find an instance
of that target concept in a 3D environment (e.g., predefined room types, such
as kitchen or bedroom, in RoomNav task defined in [26]).

Environment: We define context-dependent environment E(c) as a contex-
tual Markov Decision Process [6] E(c) = (S,A, P (s′|s, a; c), r(s, a;T, c)), where



4 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

S is the state space, A the action space, T the given target. The context c de-
notes the objects, layouts and any other semantic information describing the
environment. c is sampled from C, the distribution of possible house arrange-
ments, or the House3D environments. In the experiments, we sample a disjoint
partition of a training set Etrain = {E(ci)}i and a testing set Etest = {E(cj)}j ,
where {ci} and {cj} are samples from C.

State: The agent receives a state s = [so, ss]. The observation so, is the
image perceived by the first-person view of the agent 1. The semantic signal ss
is a binary vector that encodes semantic information of objects and layouts.

Transition: The transition probability P (s′|s, a; c) describes the change of
a state s given an action a. The context c encodes the position and layouts of
the objects in the house, and thus affects the transition. The agent’s physical
dynamics is not changed for different c.

Reward Function: r(s, a; c, Ti) is the reward function for task Ti in E(c).
To facilitate training, we design a shaped reward function for the agent rtrain
using the semantic information of scenarios. During testing, the agent is not
given any reward signal and succeeds when reaching the target.

Objective: Let µ(a|s; θ) denote the agent’s deterministic policy parameter-
ized by θ given the state s. The objective is to maximize the testing performance,
i.e., the accumulative reward rtest,

θ? = arg max
θ

ETi∼T ,c∼C [Rtest(µ(θ); c, Ti)] . (1)

The learned policy is measured with Eq. 1 in the test environments Etest, which
is not accessible during training.

4 Learning a Semantic Prior for Guided Navigation

The key idea in our approach is the fact that while each environment can be dif-
ferent in visual appearance and layouts, there are structural similarities between
environments that can be captured as a probabilistic graphical model over the
semantic information. For example, in most houses the dining room connects to
the kitchen, and living room may be next to the entrance. Thus, while navigating
in a new, unseen, house, we can use Bayesian inference to estimate the structure
of our current house, using the data seen during training as a prior, and use the
inferred house plan to efficiently explore the house. For example, if our task is to
find the kitchen while the agent is in the living room, we know that the dining
room could be a way point along our trajectory. See Sec. 4.1 for details.

We aim to learn a probabilistic model M?(D, c) that captures the distribution
C of contexts, which encodes the semantic information of the environments,
from the agent’s experiences D (i.e., the exploration trajectories). Given a new
environment E(c′), the agent computes a posterior P (c′|D′,M?) of its unknown
current semantic context c′ driven by the learned model M? and its current

1 In this work we consider image input, but other sensory observations can be handled
similarly.



Learning a Semantic Prior for Guided Navigation 5

observations D′ in E(c′). This allows the agent to plan according to its belief
of c′ in order to reach the goal more effectively. Note that the Bayesian model
allows the agent to perform probabilistic inference even with limited (or even
no) exploration experiences.

Learning an accurate and complete Bayesian model M?(D, c) can be chal-
lenging. For 3D navigation, learning a full M? would involve 3D reconstruction
of the unknown environment from the semantic relationships the agent has ob-
served. In fact, lower level attributes of the scene, such as the color or shape of
the rooms and objects, are less relevant for navigation. Therefore, we build a
semantic model which disregards the irrelevant information in D. We learn an
approximate latent variable model M(y, z;ψ) parameterized by ψ with obser-
vation variable y and latent variable z. With this simplified model, we aim to
extract samples of y only via the semantic signal ss without using image ob-
servation so, and ensure z contains semantic information from the underlying
context c that are necessary for the tasks in question.

4.1 Definition of a Graphical Model over Target Concepts

Navigating to faraway targets in real 3D scenes is challenging: an agent can get
stuck or diverge from the target due to lack of visual evidence about its relative
location to the goal. We use the structure of natural scenes to decompose the
task into a set of subtasks, each of which requires navigating to a nearby target
on the path to the actual goal. In RoomNav, we define these subtasks as finding
the neighboring room on the way to the final target. If the connectivity graph
of the scene is known a priori, the agent can easily decompose the task into
a sequence of distinct subtasks, each achieved with a small number of steps.
However, the connectivity graph is not known to the agent beforehand. We wish
to build a model that is used by the agent to efficiently navigate to the target.

To this end, we represent our model M as a probabilistic graph over the K
targets {T1, . . . , TK}. In RoomNav, each target corresponds to a room type. We
use a Bernoulli random variable zi,j to denote whether room type Ti and Tj are
connected, i.e., they are in proximity of one another 2. The random variables
zi,j are symmetric, i.e., zi,j = zj,i. For simplicity, we assume the edges in the
graph are independent : we have zi,j ∼ Bernoulli(ψzi,j), where ψz correspond to
the model’s parameters associated with connectivity. During exploration and for
each latent variable zi,j , the agent receives samples from a noisy observation yi,j
defined as yi,j ∼ zi,j + ε(ψyi,j), where ψy are the model’s parameters associated
with the observations. More concretely,

yi,j ∼
{

Bernoulli(ψyi,j,0) if zi,j = 0

Bernoulli(1− ψyi,j,1) if zi,j = 1
(2)

Eq. 2 states that the observation yi,j may have a different value from true value
zi,j = c with probability ψyi,j,c. This models the practical case where the agent

2 Although there can be multiple instances for each type (e.g., a house with two
bedrooms), for simplicity we only consider connectivity over types here and leave a
more precise graphical model for future work.



6 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

may collect wrong connectivity signals due to its imperfect policy (e.g., even for
nearby rooms the agent can get stuck and never reach Tj from Ti) or noise in
ss.

We wish to learn the optimal set of parameters ψ? of M such that our model
M(y, z;ψ?) leads to accurate navigation. More specifically, we aim to learn ψ
such that (1) the prior distribution P (z;ψ?) captures the semantic knowledge of
the context distribution C (e.g., garage is outdoor; dining room often connects to
kitchen); (2) computing the posterior P (z|Y;ψ?) with Bayes rule reflects the true
underlying semantic structure of the unseen environment E(c′) after obtaining
a set Y of samples to random variable y.

There are several advantages of representing M in the form of a graph with
independent random edges: (1) We can combine any graph-based planning algo-
rithms from the classical AI literature to potentially handle much more compli-
cated tasks beyond visual navigation (e.g., reasoning); (2) the graph representa-
tion is naturally interpretable by humans during planning. In the experimental
section, we will show that how our graph representations leads to improved nav-
igation performance.

4.2 Combining the Graphical Model with Subpolicies for Guided
Navigation

Here we focus on how to obtain samples to random variable y from the semantic
signal ss. Such a low-dimensional discrete signal is commonly used in AI, e.g.,
for robotic manipulation tasks ss can indicate whether the robot is holding an
object, for video games it is the game status of a player, in visual navigation it
can indicate whether the agent reached a landmark. In our setup, we define ss
as a K-bit vector, whose i-th bit indicates whether the agent is now at target
Ti.

For simplicity, we assume that ss is directly given by the environment. Al-
ternatively, one can train an classifier to predict the room type from the agent’s
observations. In practice, even when the semantic signal is directly given by the
environment, ss can be noisy due to the labeling error3.

Suppose the agent explores the current environment for a short horizon of N
steps obtaining N different visual signals so

(1), . . . , so
(N) as well as the binary

semantic signals ss
(1), . . . , ss

(N). We compute the bit-OR operation over these
binary vectors B = ss

(1) OR . . . OR ss
(N). Then for all pair of targets (Ti, Tj)

with B(i) = B(j) = 1, we assume that Ti and Tj are nearby, which in turn
implies a positive sample of yi,j , For all (Ti, Tj) with B(i) 6= B(j), we assume
that the targets are faraway, which implies a negative sample of yi,j . With these
samples of yi,j , we can compute the posterior distribution of the latent structure
z using the Bayes rule. The posterior is then used to plan on the environment
by executing the subtask whose target is towards the final target Ti with the

3 In the SUNCG dataset on which our environment is built, labels for room regions
can be noisy. For example, the corresponding region for a kitchen can be much larger
than the actual area. This means that ss(i) = 1 may imply that the agent is near
room Ti.



Learning a Semantic Prior for Guided Navigation 7

highest probability. Concretely, suppose the current state is s(t), we find a most
likely trajectory p0, . . . , pm towards the target by Eq. 3 and then set Tp1 as our
next subtask:

{pj}j = arg max
p0,...,pm

P

[
ss

(t)(p0)

(
m∏
u=1

zpu−1,pu

)
zpm,i = 1 | Y,M(ψ)

]
. (3)

4.3 Learning the Graphical Model

The model’s parameters ψ can be decomposed into two parts, ψz determines the
prior of the connectivity between targets; ψy affects the observation noise and
is related to the performance of the trained neural subpolicy µ(θ): if µ(θ) has
very high success rate for reaching nearby targets, ψy should be low; when µ(θ)
is poor, ψy can be relatively higher. Hence, we propose two objectives to learn
these two parts of parameters.

Learning ψz: Here we consider learning ψz from Etrain. During training,
we have full access to the labels of the environments, and thus know directly
the connectivity between any two rooms (Ti, Tj) (e.g., distance within some
threshold) for a particular house E(c) ∈ Etrain: if Ti and Tj are connected, we
obtain a positive sample of zi,j ; otherwise we obtain a negative samples of zi,j .

Suppose Z denotes the samples we obtained for latent variable z from all
the training environments. We run maximum likelihood estimate to learn the
optimal ψz by maximizing

LMLE(ψz) = P (Z|ψz). (4)

An alternative approach for collecting Z is to perform random exploration
from room Ti to Tj for a long horizon to obtain a sample of zi,j

4. In practice,
random exploration is more efficient and can lead to slightly better performances.

Learning ψy: Note that there is no supervision for the parameters ψy. We
can only evaluate the effectiveness of a particular ψy by running the guided nav-
igation method in the previous section. Suppose Rtest(µ(θ),M(ψ); c, T ) denotes
the accumulative reward on E(c) for target T by applying the guided navigation
approach. In a another disjoint validation set of environments Eval, we optimize
the accumulative reward as follows

Lvalid(φy) = EE(c)∈Evalid,T∼T [Rtest(µ(θ),M(ψ);T, c)] . (5)

Explicitly optimizing Lval is hard. Instead, we apply local search to find the
optimal parameters ψy.

4 We can also use the trained policy µ(θ) to collect samples. Random exploration is
just simpler and we can then separate graph learning and subpolicy training. It will
take exponential number of steps for a random policy to reach a faraway target so
it is a natural choice to use random exploration to measure “connectivity” between
two targets



8 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

Fig. 1. The most and least likely nearby rooms for dining room (L), bedroom (M) and
outdoor (R). Numbers are prior probability of connectivity between two room types.

4.4 Learning the Neural Subpolicy

For the neural subpolicy µ(θ), we train K different LSTM policies, i.e., µ(θi)
for each target Ti ∈ T , using A3C [15]. When navigating towards target Ti, we
simply execute the corresponding policy µ(θi). We notice that training separate
sub-policies leads to better performance than training a multi-target policy as
originally described in [26].

5 Experiments

In this section, we experiment on the RoomNav task [26] and try to answer the
following questions: (1) What does the prior distribution look like? Is it reason-
able? (2) Does our graph based guided navigation improve test performances?
(3) How does our approximate Bayesian sampling compare with a ‘blind’ model
for parsing the semantic signal using a RNN? (4) Can we extend our approach
to more target concepts, i.e., objects? The answers follow.

5.1 Environment and Task Setup

We select K = 8 room types as the targets. For training each subpolicy µ(θ), we
use the same success measure, reward shaping and policy architectures. We use
A3C with curriculum learning. Note that µ(θ) only takes in the visual observation
so. For training environments, we use the large set of 200 houses from Hosue3D
as Etrain and the test set of 50 houses as Etest. We use the small set of 20 houses as
Eval to cross validate ψy. More training details can be found in the supplementary.

In the following experiments, we focus on a fixed horizon H: if the agent does
not reach the target within H steps, we terminate the episode and declare it a
failure. During evaluation, we run a total of 5000 testing episodes. We also fix
the random seed of the environment for a fair comparison so that in each testing
episode, the agent will always start from the same location and have the same
target.

5.2 The Learned Graph

We visualize the learned parameter ψz which defines the prior probability P (z|M(ψz)).
Fig. 1 shows 3 room types and their most and least likely connected rooms



Learning a Semantic Prior for Guided Navigation 9

according to the prior probabilities. The learned prior indeed captures reason-
able relationships over room types: bathroom is likely to connect to a bedroom;
kitchen is often near a dining room while garage is typically outdoor.

5.3 Performance on RoomNav

We compare the performance of our guided navigation approach against two
baselines (1) the random policy (denoted by “random”) and (2) only executing
a single subpolicy µ(θi) for the target Ti throughout the episode (denoted by
“pure µ(θ)”).

We experiment with different (1) exploration steps N and (2) horizon length
H. We show performance of different approaches with N = 30, 50 and H =
300, 500, 1000 in Fig. 2 where the x-axis is the distance in meters5 of the agent’s
birth place to the target room while the y-axis is the success rate.

We observe that random policy performs poorly while our guided navigation
approach works much better than the pure neural policy, especially on faraway
targets: when the horizon becomes longer, the success rate for targets that are
further away significantly increases while the single neural policy fails to reach
faraway targets even with a large number of steps. This implies that our graphical
model based planner provides effective intermediate sub-goals which help the
neural policy eventually reach the distant target. Moreover, we notice that for
a fixed horizon H with small exploration step, (N = 30), our approach leads to
better performance. Note that smaller N implies more planning computations
and sub-goals. This reflects the importance of having a planning module in
navigation.

Fig. 3 shows an example of a success trajectory with our graph-based planner.
We visualize the progression of the episode, describe the plans and show the
updated graph after exploration.

5.4 Comparing to RNN Baselines without a Graph Representation

To show the effectiveness of our graph-based planner, we train two baseline
models by augmenting the pure policy with the semantic signal and by replacing
the graph with a memory-based controller.

Augmented policy µs(θs): We train a neural policy µs(θs) which takes as
input the semantic signal ss in addition to the visual signal so. Note that these
are the same input signals used by our approach when learning the graph.

RNN controller: The graphical model M (Eq. 3) only depends on (1)
the semantic signal of the current state ss

(t), (2) the final target Ti and (3)
the accumulative bit-OR feature B from the last exploration period. Hence, we
replace M with an LSTM controller that outputs the next subtask and takes in
exactly the same input signals as M . We also feed in the the previous subtask

5 Moving towards the target for 1 meter typically requires 2 to 4 actions in the shortest
path. The agent also needs to keep staying in the room for additional several steps
in order to succeed in the RoomNav task.



10 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

Fig. 2. Performance on RoomNav of random policy (green), pure µ(θ) (red) and our
guided navigation approach (purple) with different exploration steps N (top: N = 30;
bottom: N = 50). X-axis: meters from agent’s birth place to target; Y-axis: success
rate.

into the LSTM. We train the LSTM controller using A3C with the same neural
policy µ(θ) used in our approach.

Since both of these baselines use the same information as our graph-based
approach, and are trained using RL to maximize performance, they provide fair
comparisons to our method. More importantly, the RNN controller has exactly
the same input and output space as our graph-based planner and uses two order
of magnitude more parameters than our approach. Thus we expect it to perform
competitively to our graph-based approach.

For the RNN controller, we train a LSTM with 50 hidden units. For µs(θs),
we use the same architecture as the original policy µ(θ). We fix N = 30 and
experiment with different horizons H. The results are shown in Fig. 4. µs(θs)
does not improve the original neural policy µ(θ). Our approach is comparable
with the RNN controller for short horizons and slightly outperforms the RNN
controler baseline under long horizon. When comparing to the RNN controller,
our approach has the following advantages: (1) M can be learned more efficiently
and has much fewer parameters: an LSTM with 50 hidden units has more than
104 parameters while M only has 38 parameters6; (2) M can easily adapt to
different subpolicies µ(θ′) with little finetuning (ψz remains unchanged) while
the RNN controller needs to re-train; (3) the model M as well as the planning
procedure are fully interpretable.

6 In practice, for c ∈ {0, 1}, we can assign the same value to all ψy
i,j,c. See more in

supplementary materials.



Learning a Semantic Prior for Guided Navigation 11

Fig. 3. Example of a successful trajectory. The agent is spawned inside the house, tar-
geting the “outdoor”. Left: the 2D top-down map with subtask trajectories (“outdoor”
– orange; “garage” – blue; “living room” – green); Middle: RGB visual image; Right:
the posterior of the connectivity graph and the proposed subtasks (red arrow). Initially,
the agent starts by executing the sub-policy ”outdoor” and then ”garage” according to
the prior knowledge, but both fail (top orange and blue trajectories). After updating
its belief that garage and outdoor are not nearby (grey edges in graph), it then exe-
cutes the ”living room” sub-policy with success (red edges in graph, green trajectory).
Finally, it executes “outdoor” sub-policy again, explores the living room and reaches
the goal (bottom orange trajectory).

5.5 Extension: from RoomNav to ObjectNav

Here we consider extending our targets from room types to object categories, e.g.,
chair, dresser, etc. Here, the agent is asked to find an instance of a particular
object type. We call this task ObjectNav. From House3D, we select Ko = 15
target types denoted by O1, . . . , OKo

. More task details are in the supplementary.

Extending the graph representation: Since an object instance can ap-
pear in multiple rooms (e.g., a chair can appear in both dining room and living
room), we introduce additional Bernoulli variables zoi,j for every pair Ti and Oj
denoting whether room Ti contains an instance of object type Oj . We use the
same approach as in RoomNav to learn the parameters ψ.

Extending the semantic signal ss: In addition to the existing K bits
corresponding to rooms, we introduce another Ko = 15 bits where ss(K + i) de-
notes whether the agent can “see” an instance of object type Oi. Here we assume
that the agent has a reasonably working object detector: ss(K + i) becomes 1 if
at least 1% pixels of the current input image belong to object type Oi.

Guided navigation for objects: We train Ko additional policies µ(θK+i)
for navigating towards object Oi. During exploration, we plan according to Eq. 3.

Results: We compare our guided navigation approach to (1) random policy
and (2) pure subpolicy µ(θ). The results are shown in Fig. 5 where our approach
outperforms all these baselines.



12 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

Fig. 4. Performance within different horizon H on RoomNav of augmented policy
µB(θB) (green), RNN controller with N = 30 (red) and our approach with graphical
model M and N = 30 (purple). X-axis: distance from agent’s birth place to target;
Y-axis: success rate.

Fig. 5. Performance on ObjectNav within different horizon H of random policy (green),
pure subpolicy µ(θ) (red) and our guided navigation with N = 30 (purple). X-axis:
distance from agent’s birth place to target; Y-axis: success rate.

6 Conclusion

In this paper, we propose guided navigation by learning a graphical model over
semantic properties that provides effective guidance to neural subpolicies even in
completely unseen environments. Our approach is lightweight, interpretable and
improves the success rate when the target is faraway. Our approach can be ap-
plied to general graphical models beyond our current simplified design. There are
two potential directions for future work: (1) using semi-/non-parametric graph-
ical models; (2) considering problems with deterministic relationships between
targets.

References

1. Bacon, P.L., Harb, J., Precup, D.: The option-critic architecture. In: AAAI. pp.
1726–1734 (2017)

2. Duan, Y., Schulman, J., Chen, X., Bartlett, P.L., Sutskever, I., Abbeel, P.:
Rl2: Fast reinforcement learning via slow reinforcement learning. arXiv preprint
arXiv:1611.02779 (2016)

3. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400 (2017)



Learning a Semantic Prior for Guided Navigation 13

4. Fox, D., Thrun, S., Burgard, W.: Probabilistic Robotics. MIT press (2005)
5. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping

and planning for visual navigation. arXiv preprint arXiv:1702.03920 3 (2017)
6. Hallak, A., Di Castro, D., Mannor, S.: Contextual markov decision processes. arXiv

preprint arXiv:1502.02259 (2015)
7. Jaderberg, M., Mnih, V., Czarnecki, W.M., Schaul, T., Leibo, J.Z., Silver, D.,

Kavukcuoglu, K.: Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397 (2016)

8. Kansky, K., Silver, T., Mély, D.A., Eldawy, M., Lázaro-Gredilla, M., Lou, X.,
Dorfman, N., Sidor, S., Phoenix, S., George, D.: Schema networks: Zero-shot
transfer with a generative causal model of intuitive physics. arXiv preprint
arXiv:1706.04317 (2017)

9. Khan, A., Zhang, C., Atanasov, N., Karydis, K., Kumar, V., Lee, D.D.: Memory
augmented control networks. ICLR (2018)

10. Leonard, J.J., Durrant-Whyte, H.F.: Directed Sonar Sensing for Mobile Robot
Navigation. Kluwer Academic Publishers, Norwell, MA, USA (1992)

11. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. JMLR (2016)

12. Mirowski, P., Grimes, M.K., Malinowski, M., Hermann, K.M., Anderson, K.,
Teplyashin, D., Simonyan, K., Kavukcuoglu, K., Zisserman, A., Hadsell, R.: Learn-
ing to navigate in cities without a map. arXiv preprint arXiv:1804.00168 (2018)

13. Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., et al.: Learning to navigate in complex
environments. arXiv preprint arXiv:1611.03673 (2016)

14. Mishra, N., Rohaninejad, M., Chen, X., Abbeel, P.: Meta-learning with temporal
convolutions. arXiv preprint arXiv:1707.03141 (2017)

15. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. In:
International Conference on Machine Learning. pp. 1928–1937 (2016)

16. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. Nature 518(7540), 529 (2015)

17. Oh, J., Singh, S., Lee, H., Kohli, P.: Zero-shot task generalization with multi-task
deep reinforcement learning. arXiv preprint arXiv:1706.05064 (2017)

18. Parisotto, E., Salakhutdinov, R.: Neural map: Structured memory for deep rein-
forcement learning. arXiv preprint arXiv:1702.08360 (2017)

19. Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele,
T., Mnih, V., Heess, N., Springenberg, J.T.: Learning by playing-solving sparse
reward tasks from scratch. arXiv preprint arXiv:1802.10567 (2018)

20. Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for
navigation. ICLR (2018)

21. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. nature 529(7587),
484–489 (2016)

22. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. IEEE Conference on Computer Vision and
Pattern Recognition (2017)

23. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks.
In: Advances in Neural Information Processing Systems. pp. 2154–2162 (2016)



14 Y. Wu, Y. Wu, G. Gkioxari, Y. Tian., A. Tamar, S. Russell

24. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain
randomization for transferring deep neural networks from simulation to the real
world. arXiv preprint arXiv:1703.06907 (2017)

25. Vezhnevets, A.S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D.,
Kavukcuoglu, K.: Feudal networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161 (2017)

26. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209 (2018)

27. Zhu, Y., Mottaghi, R., Kolve, E., Lim, J.J., Gupta, A., Fei-Fei, L., Farhadi, A.:
Target-driven visual navigation in indoor scenes using deep reinforcement learning.
In: Robotics and Automation (ICRA), 2017 IEEE International Conference on. pp.
3357–3364. IEEE (2017)



Learning a Semantic Prior for Guided Navigation 15

A Environment Details

In RoomNav the 8 targets are: kitchen, living room, dining room, bedroom,
bathroom, office, garage and outdoor.

For ObjectNav, the 15 object targets are: kitchen cabinet, sofa, chair, toilet,
table, sink, wardrobe cabinet, bed, shelving, desk, television, household appli-
ance, dresser, vehicle and pool.

We inherit the success measure of “see” from [26]: the agent needs to see
some corresponding object (in ObjectNav, it is the target object) for at least
450 pixels in the input frame and stay in the target area for at least 3 time
steps.

For the binary signal ss, we obtain from the bounding box information for
each room provided from SUNCG [22].

Originally the House3D enviroment supports 13 discrete actions. Here we
reduce it to 9 actions: large forward, forward, left-forward, right-forward, large
left rotate, large right rotate, left rotate, right rotate and stay still.

B Details for Learning Neural Policies

We utilize the same policy architecture as [26]. We run A3C with γ = 0.97, batch
size 64, learning rate 0.001 with Adam, weight decay 10−5, entropy bonus 0.1.
We backprop through at most 30 time steps. We also compute the squared l2
norm of logits and added to the loss with a coefficient 0.01. We also normalize
the advantage to mean 0 and standard deviation 1.

We run a curriculum learning by increasing the maximum of distance between
agent’s birth meters and target by 3 meters every 10000 iterations. We totally
run 60000 training iterations and use the final model as our learned policy µ(θ).

C Details for Learning Graphical Model

After evalution on the validation set, we choose to run random exploration for
300 steps to collect a sample of z. For a particular environment, we collect totally
50 samples for each zi,j .

For all i, j, we set ψyi,j,0 = 0.001 and ψyi,j,1 = 0.15.

D Additional Experiment Details

For the RNN controller, we ran A2C with batch size 32, learning rate 0.001 with
adam, weight decay 0.00001, gamma 0.99, entropy bonus 0.01 and advantage
normalization. The reward function is designed as follows: for every subtask it
propose, it gets a time penalty of 0.1; when the agent reach the target, it gets a
success bonus of 2.

The input of RNN controller consists of (1) ss
(t) (K bits), (2) B (K bits), (3)

last subtask Tk, and (4) the final target Ti. We convert Ti and Tk to a one-hot
vector and combine the other two features to feed into the RNN. Hence the input
dimension of RNN controller is 4K, namely 32 in RoomNav.


	Learning a Semantic Prior for Guided Navigation

