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Trends towards learning-based robotics



Reinforcement Learning

Go (AlphaGo Zero) Dota 2 (OpenAI Five)



What about Robotics? RL doesn’t work because it uses lots of experience.

5 million games 

~500 years of playing 

Go: 200 years per day 

Dota: 200 years per day





Simulators



Learning dexterity



24 joints: 

20 actuated 

4 under actuated







Rotating a block

Challenges 

RL in real world 

high dimensional 
control 

noisy and partial 
observations 

manipulating multiple 
objects.



Approach



Reinforcement Learning 
+ 

Domain Randomization



Reinforcement Learning
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Reinforcement Learning

Proximal Policy Optimization (PPO)

Schulman et al. (2017)
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Policy

fingertip positions object pose Noisy Observation

finger joint positions

Normalization

Fully-connected ReLU

LSTM

Action Distribution

Goal



Distributed training with Rapid

Policy Parameters

Optimizers
8 GPUs

Rollout Workers
6,000 CPU Cores





Domain Randomization

F Sadeghi, S Levine (2017)

Tobin et al. (2017)

Peng et al. (2018)



Physics Randomizations

object dimensions 

object and robot link masses 

surface friction coefficients 

robot joint damping coefficients 

actuator force gains 

joint limits 

gravity vector
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We train a control policy using reinforcement learning. 
It chooses the next action based on fingertip positions 
and the object pose.

B

We train a convolutional neural network to predict the 
object pose given three simulated camera images. 

C

Observed
Robot States Actions

Object Pose

Distributed workers collect 
experience on randomized 
environments at large scale. 
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Object Pose

Fingertip
Locations

We combine the pose estimation network 
and the control policy to transfer to the real world.
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Results

RANDOMIZATONS OBJECT TRACKING
MAX NUMBER  

OF SUCCESSES
MEDIAN NUMBER  

OF SUCCESSES

All Vision 46 11.5

All Motion tracking 50 13

None Motion tracking 6 0
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finger pivoting, finger gaiting, multi-finger coordination, the controlled use of gravity, and coordinated
application of translational and torsional forces to the object. It is important to note that we did not
incentivize this directly: we do not use any human demonstrations and do not encode any prior into
the reward function.

For precision grasps, our policy tends to use the little finger instead of the index or middle finger.
This may be because the little finger of the Shadow Dexterous Hand has an extra degree of freedom
compared to the index, middle and ring fingers, making it more dexterous. In humans the index and
middle finger are typically more dexterous. This means that our system can rediscover grasps found
in humans, but adapt them to better fit the limitations and abilities of its own body.

Figure 7: Different grasp types learned by our policy. From top left to bottom right: Tip Pinch grasp,
Palmar Pinch grasp, Tripod grasp, Quadpod grasp, 5-Finger Precision grasp, and a Power grasp.
Classified according to [18].

We observe another interesting parallel between humans and our policy in finger pivoting, which is a
strategy in which an object is held between two fingers and rotate around this axis. It was found that
young children have not yet fully developed their motor skills and therefore tend to rotate objects
using the proximal or middle phalanges of a finger [44]. Only later in their lives do they switch to
primarily using the distal phalanx, which is the dominant strategy found in adults. It is interesting
that our policy also typically relies on the distal phalanx for finger pivoting.

During experiments on the physical robot we noticed that the most common failure mode was
dropping the object while rotating the wrist pitch joint down. Moreover, the vertical joint was the
most common source of robot breakages, probably because it handles the biggest load. Given these
difficulties, we also trained a policy with the wrist pitch joint locked.6 We noticed that not only does
this policy transfer better to the physical robot but it also seems to handle the object much more
deliberately with many of the above grasps emerging frequently in this setting. Other failure modes
that we observed were dropping the object shortly after the start of a trial (which may be explained
by incorrectly identifying some aspect of the environment) and getting stuck because the edge of an
object got caught in a screw hole (which we do not model).

We encourage the reader to watch the accompanying video to get a better sense of the learned
behaviors.7

6We had trouble training in this environment from scratch, so we fine-tuned a policy trained in the original
environment instead.

7Real-time video of 50 successful consecutive rotations: https://youtu.be/DKe8FumoD4E
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